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Theory, experimental aspects, and use in structure calculation
of cross-correlated relaxation rates measured on zero- and double-
quantum coherences in liquid state NMR are presented. The rel-
ative size of the interaction depends on the projection angle be-
tween the two tensorial interactions. The tensorial interaction can
be either a dipolar interaction or a chemical shift anisotropy
relaxation mechanism (CSA). Effects of additional sources of
relaxation on the cross-correlated relaxation rates are analyzed.
Also, an easy-to-use formalism is given to manipulate different
cross-correlated relaxation interactions. The application addresses
measurement of the backbone angle c in a protein by measuring
dipole(15N–1H)–dipole(13Ca–1Ha) and CSA(15N)–dipole(13Ca–
1Ha) cross-correlated relaxation rates. It is shown that ambiguities
due to the 3 cos2u-1 dependence of one cross-correlated relaxation
rate can be overcome by measuring additional cross-correlated
relaxation rates. The use of cross-correlated relaxation rates is
demonstrated in structure calculations. © 2000 Academic Press

INTRODUCTION

Recently, we introduced a new structural parameter
high-resolution NMR that uses cross-correlated relaxatio
double- and zero-quantum coherences to extract structur
formation (1). The parameter allows the measurement of
jections of tensorial interactions onto each other. As oppos
NMR of liquids, such projections of tensors have been d
mined and interpreted in structural terms in solid-statelocal
field separated(2), spin diffusion (3), or multiple-quantum
NMR spectroscopy (4). For the last approach, the orientation
the two tensors with respect to each other can be derived
the sideband pattern of the multiple quantum coherence
NMR of liquids, however, magnetic interactions between
tensors of rank 2 which belong to different heteronuclei
only be measured via double- and zero-quantum coher
and detected through relaxation. The main source of relax
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ünchen, Lichtenbegstr4 D-85747 Garching, Germany.
2 Present address: The Scripps Research Institute, 10550 North Torre
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is the dipolar interaction between directly bound nuclei. In
pairs of nuclei (A1–A2 and B1–B2), projection angle depende
cross-correlated relaxation rates due to two dipolar coup
GA1A2,B1B2

c of double- and zero-quantum coherences betw
nuclei A1 and B1 can be measured provided the follow
requirements are fulfilled:

(a) The desired double- and zero-quantum coherenc
tween nuclei A1 and B1 can be excited.

(b) There are couplings such that antiphase coherence
tween A1 and A2 as well as between B1 and B2 can be
refocused.

(c) The main relaxation source for single-quantum co
ence of A1 (SQC) is the dipolar coupling to A2 and the mai
relaxation source of SQC of B1 is the dipolar coupling to B2.

The dipole tensor between two spins A1 and A2 (B1 and B2)
is axially symmetric with the axis of symmetry collinear to
bond defined as the internuclear vectorA1A2. The structura
implication of the angular dependence of the interaction of
dipole tensorsA1A2 and B1B2 is therefore straightforward.
directly defines the interbond angle. For cross-correlated r
ation rates involving chemical shift anisotropy (CSA), the C
tensor needs to be determined in the molecular frame e
experimentally or by quantum chemical calculations. The l
requirement is not always fulfilled and makes the measure
of dipolar cross-correlated relaxation rates easier to inte
from a structure point of view.

To further illustrate the principle of the cross-correla
relaxation, we assume that we have two pairs of vectors A1–A2

and B1–B2 spanning an angleu. We now describe the effects
cross-correlated relaxation on the lineshape and line inten
of double-quantum (DQ) or zero-quantum (ZQ) cohere
with active nuclei A1 and B1 (Fig. 1).

These DQ and ZQ coherences evolve chemical shiftVA1 1
VB1 andVA1 2 VB1, respectively. A doublet of doublet of lin
is generated with splittings due to scalar coupling ofJ(A1, A2)

nd J(B1, B2) if A 2 and B2 are not decoupled during th
indirect evolution period. We further assume that the sig
the gyromagnetic ratios of A1 and A2 and the signs of the tw
coupling constants are positive. In the absence of cross-c

nes
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46 REIF ET AL.
lated relaxation, all four multiplet components would have
same linewidth and intensities (Fig. 1b).a and b denote th
polarization of A1 and A2, respectively. Including the effects
cross-correlated relaxation, the relative intensities of the
are different depending on the relative orientation of the
vectors. If the two vectors A1–A2 and B1–B2 are oriente
parallel to each other, the outer two lines are broader tha
inner lines (Fig. 1c). The opposite is true for orthogonal
entation of the two vectors (Fig. 1d). Equal intensity for all f
lines is also obtained if the two vectors span themagic angle
u 5 tan21(=2) ' 54.7° (Fig. 1b).

Cross-correlated relaxation has already been used in th
n high-resolution NMR as well. Dalvit and Bodenhausen5)
ntroduced in 1988 a triple-quantum-filtered NOESY for
le-quantum coherences only where a system of three n
a, Hb

pro-R, and Hb
pro-S, in a protein is investigated to yie

structural information about the side chain conformation.
complementary experiment applicable for biomacromolec
is the triple-quantum-filtered ROESY, published by Br¨s-
chweileret al. (6) in 1989. The drawback of the two expe
ments is their inherently low sensitivity which is due to
large distances of the spins involved. Furthermore, the e
iments can only be carried out if the involved nuclei are sc

FIG. 1. (a) Cross-correlated relaxation of double- and zero-quantum
herences: The requirement imposed on the spin system is that there a
pairs A1–A2 and B1–B2. The couplingsJ(A1, A2) and J(B1, B2) must be
esolved. In addition, the dipolar relaxation A1–A2 and B1–B2 should be th

main source ofT2 relaxation of A1 and B1, respectively. (b–d) Schema
multiplet pattern observed for intervectorial angles ofu 5 54.6°, 180°, and 90
The cross correlation of relaxation leads to different linewidths for the m
plet components.
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coupled. Quantitative interpretation of the spectra with res
to the size of the involved angleu kl,km is very difficult since th
multiplets are affected by scalar couplings and relaxa
which are difficult to disentangle.

Vold et al. (7) have shown on dilute solutions of trisub
uted benzenes such as 1,2,3-trichlorobenzene that cros
elation rates can also be used to determine the mo
nisotropy of a molecule. Since the rateR1 for each individua

line is a function of the corresponding spectral density for
transition between the respective spin states (8), Dxx, Dyy, and
Dzz can be estimated after calculation of the transition pr-
bilities for a AB2 spin system—assuming a nonspherical re-

ntational process.
Another experiment that has been recorded to charac

indered or unhindered rotation of side chains in a proteinx1)
was introduced by Ernst and Ernst (9) in 1994. Sign changes
the cross-correlation rate are interpreted as a function o
motional model of the side chain. However, all these
proaches did not provide structural information in a sim
way.

In the following, a mathematical description of the effec
dipole–dipole and dipole–CSA cross-correlated relaxatio
solution NMR will be given.

THEORETICAL DESCRIPTION

Cross-Correlated Relaxation of Zero- and Double-Quantu
Coherences

In the following, we consider two spin pairs, a N–HN vector
nd a Ca–Ha vector in a protein, for which we excite doub

and zero-quantum coherences between N and Ca. The equatio
of motion for the different components of double-quantum
zero-quantum coherencesŝm,m9

DQ/ZQ under the influence of th
scalar coupled, directly bound, protons has the general f

~ŝ m,m9
DQ/ZQ! • 5 @2Ĝ̂ DQ/ZQ 2 iV DQ/ZQ#~ŝ m,m9

DQ/ZQ!. [1]

he termsŝm,m9
DQ/ZQ summarize the double- and zero-quan

coherences C1N1HC
mHN

m9, C2N2HC
mHN

m9, C1N2HC
mHN

m9, and
C2N1HC

mHN
m9. HC

mHN
m9 (m, m9 5 a, b) stands for the spin pola-

ization operators of the nitrogen- and carbon-bound pro
respectively. The isotropic chemical shiftVDQ/ZQ (the index DQ
refers to coherences C1N1, ZQ to coherences C1N2; for the
hermitian conjugate coherences C2N2 and C2N1, all signs in
Eq. [2] are inverted) for the four resonance lines with (m, m9) 5
(aa), (ab), (ba), and (bb) of the doublet of doublets is give
by

o-
two
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47MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS
In the relaxation matrixĜ̂DQ/ZQ, the termGm,m9
DQ/ZQ denotes th

different cross-relaxation rates due to the heteronuclear d
interaction, including the dipole–dipole cross-relaxation
GNH,CH

c , the CSA–dipole cross-relaxation ratesGC,NH
c , GN,NH

c ,
GC,CH

c , and GN,CH
c , and the secular part of the relaxation

double-quantum and zero-quantum transitions due to
between the protons HN and HC, W2 andW0. The nonsecula
part of the latter mechanism is reflected in the off-diag
elementsW2 and W0. Ga contains the contributions due

utocorrelated relaxation and external relaxation of
-DQ/ZQ coherences.GT1(H

N) and GT1(H
C) denote the con-

tributions due toT1 relaxation of the proton directly attached
the carbon and nitrogen, respectively. The influence of

secular contributions in the relaxation matrixĜ̂DQ/ZQ on the
angle-dependent dipole–dipole cross-relaxation rate is
cussed in detail later in this article. Secular contribution

Ĝ̂DQ/ZQ are discussed in the following.

Dipole–Dipole Cross-Correlated Relaxation

In the following, we focus on the relaxation due to
heteronuclear dipolar couplings. The relaxation superope
in Eq. [A.6] which acts on double- and zero-quantum co
ences contains contributions from autocorrelated relax
(V 5 W 5 dipole NH or dipole CH),

@Ĝ̂ NH,NH
a 1 Ĝ̂ CH,CH

a #~ŝ m,m9
DQ/ZQ!

5 bNH
2 O

q522

2

@ÂNH
~2q!, @ÂNH

~q! , ŝ m,m9
DQ/ZQ## j NH,NH

q ~vq!

1 bCH
2 O

q522

2

@ÂCH
~2q!, @ÂCH

~q!, ŝ m,m9
DQ/ZQ## j CH,CH

q ~vq!, [4]

V DQ/ZQ 5 3 ~VC 6 VN!1 1 p1
6JNH 1 JCH

0
0
0

VC andVN are the carbon and nitrogen chemical shifts an1J

lines due to the scalar coupling. The relaxation matrixĜ̂DQ/ZQ h

Ĝ̂ DQ/ZQ 5 1
G a 1 G1 1 G aa

DQ/ZQ 2GT1~H
N

2GT1~H
N! G a 1 G1 1 G

2GT1~H
C! 2W0

2W2 2GT1~H
C

G1 5 GT1~H
N! 1 GT1~H

C!.
lar
e

f
E

l

,

n-

is-
n

tor
r-
n

and from cross-correlated relaxation (V Þ W),

@Ĝ̂ NH,CH
c 1 Ĝ̂ CH,NH

c #~ŝ m,m9
DQ/ZQ!

5 bNHbCH O
q522

2

@ÂNH
~2q!, @ÂCH

~q!, ŝ m,m9
DQ/ZQ## j NH,CH

q ~vq!

1 bNHbCH O
q522

2

@ÂCH
~2q!, @ÂNH

~q! , ŝ m,m9
DQ/ZQ## j CH,NH

q ~vq!,

[5]

n whichV 5 NH andW 5 CH. In the autocorrelation case,
relaxation superoperator contains second-rank tensor ope
stemming from only one interaction, whereas in the cr
correlated case, double commutators containing tensor o
tors from two distinct interactions have to be evaluated. In
secular approximation, only double commutators with a
mor frequency of 0 contribute (vide infra). The termsbNH and
bCH are given in Eq. [A.1]. The expressions for the differ
relaxation rates for auto- and cross-correlated relaxation
be illustrated in the following. As an example, the dou
commutator from Eqs. [4] and [5] is applied to double-qu
tum coherences C1N1HC

mHN
m9. For clarity, the operator symbo

on the proton, carbon, and nitrogen operators are omitted
following. The complementary expressions C2N2HC

mHN
m9 and

ero-quantum coherences behave accordingly. The four
1N1HC

mHN
m9 (m, m9 5 a, b) corresponding to the four multipl

lines of the doublet of doublets are subjected to the diffe
double commutators for auto- and cross-correlated relaxa
This is summarized in Fig. 2. Note that the result of the do
commutators differs only in sign due to the relation HzH

a 5
1
2 Ha and HzH

b 5 2 1
2 Hb. Note that the gyromagnetic ratio of

0 0 0
JNH 1 JCH 0 0

0 6JNH 2 JCH 0
0 0 7JNH 2 JCH

24 . [2]

and1JCH the relative chemical shifts of the different multip

the form

2GT1~H
C! 2W2

ZQ 2W0 2GT1~H
C)

G a 1 G1 1 G ba
DQ/ZQ 2GT1~H

N!
2GT1~H

N! G a 1 G1 1 G bb
DQ/ZQ

2
[3]
7

dNH

as

!

ab
DQ/

!
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48 REIF ET AL.
and the 1J(N,H) coupling constant are both assumed to
negative.

In the autocorrelated case, as well as in the cross-corre
case, thesingle line operatorsC1N1HC

mHN
m9 are eigenoperato

with respect to thej 0(0) part. In the autocorrelated case,
lines relax equally fast, whereas in the cross-correlated
for the two pairs of linesaa andbb, as well asab andba, the
rates have the same absolute value, but opposite sign
right-hand side of Fig. 2 shows a graphical representatio
the respective rates. Altogether, the multiplet is governed
superposition of the rates ofGa andGNH,CH

c , which is indicated
by the sum of the two rates at the bottom at the right-hand
of Fig. 2.

For the simplest case of isotropic reorientation, the dip
dipole cross-correlated relaxation rate for each multiplet lin
the doublet of doublets according to Eq. [5], with the spe
density function given in Eq. [A.8] for a spherical top mo
cule, can be written as

G NH,CH
c 5

gHgN

~r NH! 3

gHgC

~r CH! 3 S m0

4p
\D 2 1

5
~3 cos2uNH,CH 2 1!tc.

[6]

Thereby,uNH,CH denotes the projection angle between the
and the CH vector.

Dipole–CSA Cross-Correlated Relaxation

The cross-correlated relaxation between a dipolar cou
and a CSA tensor, e.g., dipole(NH) with CSA(N)
dipole(NH) with CSA(C), contributes to the relaxation ra
of the four resonance lines. The rates for the CSA– di
cross-correlated relaxation are derived from Eq. [A.6]

FIG. 2. Double commutators for dipole–dipole auto- and cro
e

ted

l
se,

he
of
a

de

–
f
l

g

s
le

double commutator for cross-correlated relaxation betw
CSA(13C) and a dipolar coupling of N–H is given as
example in Fig. 3. Note that the cross-correlated relaxa
rates for the four lines differ only in sign but not in absol
value. Therefore, they can be summarized as shown in
3. Note that the assignment of the order of the spin p

correlated relaxation and respective rates in a graphical representation

FIG. 3. Schematic representation of the dipole–CSA cross-correlate
laxation rates of C, N DQ and ZQ coherences. The double commutator
as an example. The sign of the rates for the respective submultiplet line is
in the boxes.
ss-
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49MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS
ization states of the multiplet components differs betw
DQ and ZQ coherences.

For the double-quantum operator, the sums of the rat
the cross-correlated spectral densities for CSA(13C) and
CSA(15N) with dipole NH and CH, respectively, are observ
Accordingly, for the respective zero-quantum coherences
difference of the rates will be observed which allows u
determine each rate individually, as will be shown later.
cording to Eq. [5], together with Eqs. [A.2], [A.3], [A.4], an
Eq. [A.8], the general form for the dipole–CSA cross-co
lated relaxation rate can be written as for isotropic tumbl

G N,CH
c 5 2

2

15
gNB0tc\

m0

4p

gHgC

~r CH! 3

3 $~sxx 2 szz!~3 cos2uCH,sxx
2 1!

1 ~syy 2 szz!~3 cos2uCH,syy
2 1!%, [7a]

where uCH,sxx and uCH,syy denote the angle between the
vector and the two principal components of the nitrogen C
tensor. An equivalent formulation is

G N,CH
c 5 2

2

15
gNB0tc\

m0

4p

gHgC

~r CH! 3

3 H ~s i 2 s'!~3 cos2uCH,si 2 1!

1
3

4
~sxx 2 syy!~sin2uCH,sicos 2fCH,sxx

!J . [7b]

If the CSA tensor is axially symmetric, Eq. [7b] simplifi
accordingly, settings xx 5 s yy 5 s ' and s zz 5 s i:

G N,CH
c 5 2

2

15
gNB0tc\

m0

4p

gHgC

~r CH! 3

3 $~s i 2 s'!~3 cos2uCH,si 2 1!%. [7c]

Further Relaxation Contributions

The cross-correlated relaxation rates affect the different
tiplet components differently. Therefore, other relaxation r
that behave similarly must be investigated as well. The N
between the two protons HN and HC leads to different relax-

tion rates of theaa andbb lines compared to theab andba
lines. A quantification of the size of this effect is given in t
subsection. The NOE between the two protons HN and HC

stems from thej (0)(vHC 2 vHN) [W0] and thej (2)(vHC 1 vHN)
[W2] term of the autocorrelated dipolar relaxation between
two protons. The respective double commutators forW0 are
n

of

.
he
o
-

-
,

A

l-
s
E

e

~C1N1HC
aHN

b! •

5 2bH CH N
2 j ~0!~vH C 2 vH N!@2 1

4 ~HC
1HN

2 1 HC
2HN

1!,

@2 1
4 ~HC

1HN
2 1 HC

2HN
1!, C1N1HC

aHN
b##

5 2 1
8 bH CH N

2 j ~0!~vH C 2 vH N!~HC
aHN

b 2 HC
bHN

a!C1N1

5 W0~HC
aHN

b 2 HC
bHN

a!C1N1 [8a]

and similarly for (C1N1HC
bHN

a)•. The respective double com-
utators forW2 can be written as

~C1N1HN
aHC

a! •

5 2bH CH N
2 j ~2!~vH C 1 vH N!

3 $@Î3
8 HC

1HN
1, @Î3

8 HC
2HN

2, C1N1HN
aHC

a##

1 @Î3
8 HC

2HN
2, @Î3

8 HC
1HN

1, C1N1HN
aHC

a##%

5 2 3
4 bH CH N

2 j ~2!~vH C 1 vH N!$~HC
aHN

a 2 HC
bHN

b!C1N1%

5 2W2~HC
aHN

a 2 HC
bHN

b!C1N1 [8b]

and similarly for (C1N1HC
bHN

b)•. Thus, the contribution to th
full relaxation matrix due to NOE is given by

1
s aa

DQ/ZQ

sab
DQ/ZQ

sba
DQ/ZQ

sbb
DQ/ZQ

2
•

521
1W2 0 0 2W2

0 1W0 2W0 0
0 2W0 1W0 0

2W2 0 0 1W2

21
s aa

DQ/ZQ

sab
DQ/ZQ

sba
DQ/ZQ

sbb
DQ/ZQ

2.

[9]

The NOE contributes a secular and a nonsecular term. W
see in the following that the nonsecular term can be igno
However, the secular term remains and contributes to
linewidth of theaa, bb line the rateW2 and to theab, ba line
the rateW0. This must be taken into account in the simulati
carried out for the evaluation of the dipole–dipole cross-
related relaxation rateGNH,CH

c in the following section.

Practical Extraction Procedure

The relative signs of the relaxation rates of the individ
linesaa, ab, ba, andbb can be written—as stated above—
the secular approximation as follows for the DQ spectrum
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50 REIF ET AL.
G aa
DQ 5 1Ga 1 G NH,CH

c 1 G N,NH
c 1 G C,NH

c

1 G N,CH
c 1 G C,CH

c 1 W2 1 G1

G ab
DQ 5 1Ga 2 G NH,CH

c 2 G N,NH
c 2 G C,NH

c

1 G N,CH
c 1 G C,CH

c 1 W0 1 G1

G ba
DQ 5 1Ga 2 G NH,CH

c 1 G N,NH
c 1 G C,NH

c

2 G N,CH
c 2 G C,CH

c 1 W0 1 G1

G bb
DQ 5 1Ga 1 G NH,CH

c 2 G N,NH
c 2 G C,NH

c

2 G N,CH
c 2 G C,CH

c 1 W2 1 G1, [10a]

and the ZQ spectrum,

G aa
ZQ 5 1Ga 2 G NH,CH

c 1 G N,NH
c 2 G C,NH

c

2 G N,CH
c 1 G C,CH

c 1 W0 1 G1

G ab
ZQ 5 1Ga 1 G NH,CH

c 2 G N,NH
c 1 G C,NH

c

2 G N,CH
c 1 G C,CH

c 1 W2 1 G1

G ba
ZQ 5 1G a 1 G NH,CH

c 1 G N,NH
c 2 G C,NH

c

1 G N,CH
c 2 G C,CH

c 1 W2 1 G1

G bb
ZQ 5 1G a 2 G NH,CH

c 2 G N,NH
c 1 G C,NH

c

1 G N,CH
c 2 G C,CH

c 1 W0 1 G1. [10b]

he relaxation rate of a signal is reflected in the linewidt
alf height. In the experiment described below, double-
ero-quantum coherences are evolved in aconstant timeman-
er during the timeT. The relaxation rate of each multip

component is directly reflected in the intensity of the signa
I mn } exp(2GmnT). Correspondingly, the cross-correlated-
laxation rates can be extracted from the multiplet intens
and also the integrals according to

G NH,CH
c,DQ 5

1

4T
lnS I DQ~ab! I DQ~ba!

I DQ~aa! I DQ~bb!D 2
1

2
~W2 2 W0!

G NH,CH
c,ZQ 5

1

4T
lnS I ZQ~aa! I ZQ~bb!

I ZQ~ab! I ZQ~ba!D 2
1

2
~W2 2 W0!.

[11]

Note that the reliability can be checked by variation of
constant time delayT (10). Note that this implies always takin
t
d

y

s

e

he product of the intensities of the inner lines in the nomin
nd the product of the intensities of the outer lines in
enominator of the logarithm (Fig. 3).
We have calculated the dipole–dipole cross-correlate

axation rate on the left-hand side of Eq. [11] with simulati
ith the program WTEST (11). The basis for these simulatio
re Eqs. [4] and [5]. To obtain the angular information ab

he included projection angle between the bond vectors NN

and Ca–Ha, Eq. [6], which describes the angular dependenc
the dipole–dipole cross-correlation rate, is combined with
[11].

The contribution to the dipole– dipole cross-correla
relaxation rate due to NOE between the two protons is g
by the difference of the ratesW2 andW0 which are given b
(12, 13)

W0 5
1

10 S m0

4pD
2S \g H

2

r H CH N
3 D 2

tc [12a]

W2 5
1

10 S m0

4pD
2S \g H

2

r H CH N
3 D 2

tcF 6

1 1 4~vHtc!
2G . [12b]

To get an impression of the size of the effect, Fig. 4 show
cross-correlation rateGHC,HN

NOE 5 W2 2 W0 between the tw
protons Hk

a and Hk11
N in a protein as a function of the backbo

anglec. The overall correlation timetc was assumed to be 6
ns.

The four cross-correlated relaxation ratesGN,NH
c , GC,NH

c , GN,CH
c ,

andGC,CH
c can be extracted from Eq. [10] in a similar way as

dipole–dipole cross-correlated relaxation ratesGNH,CH
c were ob-

tained. The single dipole(NH)–CSA cross-correlation rate
given by

FIG. 4. NOE cross-correlation rateGH C,H N
NOE between the protons Hk

a and
Hk11

N in a protein as a function of the peptide backbone anglec (tc 5 6.4
ns) according to Eq. [12].c is correlated with the distance between the
protons by the relation given in Fig. 11b.
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G N,NH
c 5

1

8T

3 lnS I DQ~ab! I DQ~bb!

I DQ~aa! I DQ~ba!

I ZQ~ab! I ZQ~bb!

I ZQ~aa! I ZQ~ba!D
G N,CH

c 5
1

8T

3 lnS I DQ~ab! I DQ~bb!

I DQ~aa! I DQ~ba!

I ZQ~aa! I ZQ~ba!

I ZQ~ab! I ZQ~bb!D
[13]

and are similar for the dipole(CH)–CSA cross-correlated
laxation rate,

G C,CH
c 5

1

8T

3 lnS I DQ~bb! I DQ~ba!

I DQ~aa! I DQ~ab!

I ZQ~bb! I ZQ~ba!

I ZQ~aa! I ZQ~ab!D
G N,CH

c 5
1

8T

3 lnS I DQ~bb! I DQ~ba!

I DQ~aa! I DQ~ab!

I ZQ~aa! I ZQ~ab!

I ZQ~bb! I ZQ~ba!D .

[14]

he orientation and size of CSA tensors are well known f
olid-state NMR studies for amides (14) and for aliphatic
arbons (15) and can be used for these studies in high-res
ion NMR. A review of investigations of CSA tensors of
inds of heteronuclei that have been determined by mea
olid-state NMR is given in Ref. (16).
As average values for the main components of the15N CSA

tensor for a peptide, one finds in the literature (16) s11 5
(2236 7) ppm,s22 5 (796 8) ppm,s33 5 (556 9) ppm, and
thereforeDs 5 si 2 s' 5 156 ppm. The orientation of the15N
CSA tensor is indicated in Fig. 5. The13C CSA tensor fo
aliphatic carbons shows only small anisotropy values.
finds the following values forL-threonine (15): s11 5 (69.06
0.4) ppm,s22 5 (58.9 6 0.4) ppm, ands33 5 (52.6 6 0.3)
ppm. Other amino acids have been investigated in Ref.17)
howing that the CSA of the13Ca varies quite strongly. Ther-

fore DQ and ZQ spectra should show different rates
respect to the scalar1JCH coupling depending on thec angle.

Cross-correlated relaxation between Ca CSA and15N CSA
does not affect the extraction procedure provided the rate
extracted from DQ and ZQ spectra individually. This ho
because this cross-correlated relaxation affects all the su
tiplet lines in the same way.
-

u-

of

e

h

re
s
ul-

Constant time versus real time evolution.Cross-correlate
relaxation rates can be extracted most easily fromconstant tim
data since the intensities and the integrals directly reflec
relaxation rates. Underreal time evolution, this is no longe
rue and the relaxation rates have to be deconvoluted fr
otentially complicated lineshape that is often not known s

t includes, e.g., small long-range coupling constants. We
ose here a deconvolution procedure that is robust again
nderlying lineshape. If we consider a multiplet with four li
ith an arbitrary, however, constant lineshapeL(v) for all

multiplet components on top of the Lorentzian lineshap
described by Eq. [10], the Fourier transformation includin
apodization functionw(t) will yield the following lineshap
Fmn(v) for the multiplet lineI mn:

Fmn~v! 5 L~v! # FT@exp~2Gmnt!# # FT@w~t!#, [15]

here # represents convolution.
As described before, the desired cross-correlated relax

ate can be extracted from

G NH,CH
c 1 1

2 ~W2 2 W0! 5 1
4 ~Gaa 1 Gbb 2 Gab 2 Gba!. [16]

The difference of the rates of the multiplet components,
Gab 2 Gaa, can be obtained by fitting the lineshapeFaa(v) to
the lineshapeFab(v) by convolution of theaa multiplet com-

onent with a Lorentzian with a trial linewidth (Gab 2 Gaa)
trial.

The best fit for (Gab 2 Gaa)
trial and similarly (Gba 2 Gbb)

trial

yields the desired cross-correlated relaxation rate. An exa
on the application of this technique is shown in Fig. 6 (18). The
aa line is broader than theab line. Duplication of the double
shifting one to the low-field side (L) by J and convoluting th
high-field multiplet with a trial LorentzianL(v, LB) with the
linewidth LB yields the three multiplets of Fig. 6H. The inte
sities of theaa(L) line and theab(H) line are identical i
LB 5 (Gaa 2 Gab). Figure 6 shows the result of the fittin
The optimalLB is 1.6 Hz.

FIG. 5. Orientation of the15N CSA tensor in a peptide according to R
14a). s11 ands33 are oriented in the peptide plane, wheres33 is rotated abou

ca. 20° relative to the C9N bond.s22 is oriented orthogonal to the peptide pla
or an amide nitrogen,s11 is the most shielded component of the CSA tens
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52 REIF ET AL.
Nonsecular Terms in the DQ/ZQ Relaxation Matrix

To be able to evaluate properly the effect of cross-corre
relaxation, it is necessary that the involved scalar coupling
resolved. However, the resolved couplings also ensure th
relaxation matrix in Eq. [3] is faithfully evaluated taking in
account only the secular components. Therefore, spectra
sity functions of nonzero frequencyj q(v Þ 0), proton T1

relaxation, and proton–proton NOE that introduce nonse
terms in the DQ/ZQ relaxation matrixĜ̂DQ/ZQ can be ignored
These terms lead to coherence transfer between the mu
components. We show here the influence of these terms w
eventually limits the applicability of the method to molecu
which are very large by NMR standards where the he
nuclear1J couplings are no longer resolved (Fig. 7).

FIG. 7. Schematic representation of theaa, ab, ba, and bb multiplet
components in a doublet of doublets. Undesired transitions due to
between HN and HC andT1 relaxation of the two HN and HC protons which
correspond to the off-diagonal elements in Eq. [3]. This leads to a trans
magnetization between the multiplet components as indicated in the figu
to a change in intensities which is considered in the text.

FIG. 6. Extraction procedure for the determination of dipole–dipole cr
correlated relaxation rates from real time data. The two lines under inve
tion are shifted by the coupling constant that needs to be known. This
the two multipletsH and L. Exponential broadening is applied on theH
doublet and the intensities of the high-field line of theH doublet is compare
to the low-field line of the low-field doublet. When they match traceS the
difference in the linewidth of the two components is determined.
d
re

the

en-

ar

let
ich

o-

a. Contributions to the cross-correlated relaxation r
NH,CH
c due to spectral density functions of higher order.In

Eq. [5], only double commutators have been considered s
with Larmor frequencyv 5 0 for the relaxation of the ope
atorssm,m9

DQ/ZQ. We show here that additional contributions du
other spectral density functions either do not exist or contr
only nonsecular relaxation terms. Except for theÂNH

(61), ÂCH
(71)

terms with the C and N operators being longitudinal=3
8 NzHN

6

and=3
8 CzHN

6, there are no further contributions due to inco-
patible Larmor frequency in the rotating frame. Evaluatio
one of the four possible permutations of the double comm
tor yields

~C1N1! • 5 2bNHbCH@Î3
8 HN

1Nz, @Î3
8 HC

2Cz, C1N1##

3 j NH,CH
1 ~vH! 5 2G NH,CH

c,q51 ~HC
2HN

1C1N1!. [17]

This term is a nonsecular term, provided that the chem
shifts of the two involved protons are different. We show
this example that this relaxation channel does not have
effect on the cross-correlated relaxation rateGNH,CH

c . The subse
f operators connected in the Liouville–von Neumann di
ntial equation by the double commutator of Eq. [17] is g

n Eq. [18]. The differential equation describes a trans
etween the lines of C1N1 and C1N1HN

1HC
2,

S C1N1

C1N1HN
1HC

2D •

5 S 0 G
G i ~VH N 2 VH C!D

3 S C1N1

C1N1HN
1HC

2D . [18]

The G terms in the matrix expression of Eq. [18] are obtai
after evaluation of the double commutator from Eq. [16].
relative chemical shift of C1N1 and C1N1HN

1HC
2 is given by 0

andDV 5 VHN 2 VHC, respectively. The eigenvaluesl1, l2 of
the matrix are

E

of
nd

FIG. 8. Schematic representation of a signal which is split due to a s
coupling of the size 2pJ into a doublet.T1 relaxation leads to an averaging
signal intensity on thea and theb line and therefore to a downscaling of
ross-correlated relaxation rateGc 5 ul1 2 l2u, as derived from Eq. [22].

-
a-
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53MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS
l1/ 2 5 i
DV

2
6 Î2

~DV! 2

4
1 G 2 <

DV@G

i
DV

2

3 F1 6 S1 2
2G 2

DV 2DG
l1 < iDV

l2 < i
G 2

DV
. [19]

It is obvious that forG , DV/2 both eigenvalues are pure
maginary. This is fulfilled for HC and HN due to their larg
ifference in chemical shifts. Therefore, as long as this ine

ty holds, there is no contribution to the linewidths of
oublet of doublets of C1N1, but only a contribution to th

relative chemical shift originating from double commutator
higher order.

b. Proton T1 relaxation. In addition, scalar relaxation
the second kind (19, 20) due to longitudinal eigenrelax

tion (r ii - and r jj -element of the Redfield matrix) throu
he interaction of the two involved protonsi and j with

other nuclei contributes nonsecular elements to the r
ation matrix Ĝ̂DQ of Eq. [3] in addition to the equal secu
contributions for all lines.T1 relaxation equilibrates th
intensities of thea-line and b-multiplet line of a given
doublet which can lead to an underestimation of the ang
dependent cross-correlation rate (Fig. 8). This shall be
cussed in this section.

To evaluate the contribution due toT1 relaxation, it is
sufficient to consider here a resonance line which is split d
a scalar coupling in aa- and ab-multiplet component. The
espective relaxation rates shall beGa, Gb and their relativ
hemical shifts6pJ. The ratesGa and Gb contain all the

secular contributions. Furthermore, intensity is transfe
from thea-line to theb-line by means ofT1 relaxation leadin
to exchange of coherence between thea- andb-line with the
rate 1/T1. The system can therefore be described as

~l1 2 l2!/ 2 5 Î~ipJ 2 GD! 2 1 S 1

T1
D 2

5
1

Î2
ÎÎ~pJ! 4

2
i

Î2
ÎÎ~pJ! 4 2 2~pJ! 2S 1

T1
2 2 G D

2D 1
l-

f

x-

r-
s-

to

d

S Î a

Î bD •

5 2Ĝ̂S Î a

Î bD

5 12Ga 2
1

T1
1 ipJ

1

T1

1

T1
2Gb 2

1

T1
2 ipJ2S Î a

Î bD .

[20]

ˆ̂ denotes the rate matrix. The eigenvaluesl1 and l2 of the

matrix Ĝ̂ are

l1/ 2 5 2SGS 1
1

T1
D 6 Î~ipJ 2 GD! 2 1 S 1

T1
D 2

, [21]

ith GS 5 1
2 (Ga 1 Gb) andGD 5 1

2 (Ga 2 Gb). After separatio
of the real and imaginary parts, one obtains for the
expression, which is (l1 2 l2)/2,

The real part contains the effective relaxation rate of linea and
b, the imaginary part the influence on the relative line posi
The effects are illustrated in Fig. 9 for an assumed cr
correlated relaxation rate of 20 Hz (a, c) and 5 Hz (b).
splitting of the two lines is due to the NH coupling which w
assumed to be 90 Hz. Figure 8 shows that the cross-corr
relaxation rate is influenced byT1 relaxation only for rate
R1 5 1/T1 in the order ofp 1JHN. This is independent of th
assumed cross-correlation rate of 20 or 5 Hz, respective
b). As the rateR1 5 1/T1 increases, the difference of t
chemical shifts of the two signals of the doublet beco
smaller. Expansion of the root expression in Eq. [22] accor
to Taylor yields the eigenvalues

l1 5 2Ga 2
1

T1
6 i Î~pJ! 2 2

1

T1
2

l2 5 2Gb 2
1

T1
6 i Î~pJ! 2 2

1

T1
2 . [23]

~pJ! 2S 1

T1
2 2 G D

2D 1 S 1

T1
2 1 G D

2D 2

1 S 1

T1
2 1 G D

2 2 ~pJ! 2D
1
2 1 G D

2D 2

2 S 1

T1
2 1 G D

2 2 ~pJ! 2D 5
1

2
G c 2

i

2
DV a,b.

[22]
2 2

S 1

T
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54 REIF ET AL.
Therefore, the dipole–dipole cross-correlated relaxation r
independent ofT1 relaxation, as long aspJ @ 1/T1.

EXPERIMENTAL IMPLEMENTATION

Introduction

The backbone anglec in proteins (Fig. 10) is relative
difficult to access by means of conventional NMR spec
scopic parameters. Either the scalar3J(Hk11

N , Ck
a) coupling (21)

r the scalar3J(Nk11, Nk) coupling (22), as well as distanc
measurements between the protons Hk

a and Hk11
N (23) (Fig.

1b), turn out to be too inaccurate to define the angle prop
different approach consists of the measurement of the

FIG. 9. Cross-correlated relaxation rateGc of a doublet resonance line
of the protonT1 time. The simulation is based on a cross-correlation rate
plit due to a scalar coupling of 90 Hz. The difference of real and imagin

corresponds to the cross-correlated relaxation rate, the imaginary part t
ffects of dipole–dipole cross correlation are averaged out by theT1 relaxatio

the doublet is not resolved any more due to the decrease ofa- andb-freque
is

-

ly.
la-

ive displacements of the1H and 15N resonance frequencies
1:1 mixtures of D2O and H2O (24). It turns out that th
solvent-induced chemical shift is a function of the backb
geometry aroundc. Recently, Yanget al. also suggeste
measuring the backbone anglec in a protein based on cros
correlated relaxation between the Ha–Ca dipolar and the C9
chemical shift anisotropy interaction mechanism (25).

The measurement of the parameter of cross-correlate
axation rate of double- and zero-quantum coherences in
ng the two dipolar vectors Ck

a–Hk
a and Nk11–Hk11

N allows a
quite accurate determination of the backbone anglec. This is
shown in the following.

Correlation ofu and c, as shown in Fig. 11, reveals th

b) and the relative chemical shift of one signal of the doublet (c) as a
20 Hz (a, c) and 5 Hz (b), respectively. The two resonance lines of the
part of the eigenvalues (l1 2 l2) as obtained from Eq. [22] is shown. The real p
e difference of chemical shift of thea- andb-component of the resonance line. T
hen the rate 1/T1 is in the order of the scalar coupling. In this case, howe
differenceDVa,b with increasing rate 1/T1 (c).
(a,
of

ary
o th
n w

ncy
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55MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS
regions of different secondary structure elements, asa-helices
and b-sheets, can be differentiated. The 3 cos2u 2 1 depen-

ence of the cross-correlated relaxation is also not degen
or the two secondary structure elements. The solid
os(u) 5 0.1631 0.819p cos(c 2 119°) can be obtained b
eans of geometrical considerations. Here bond lengt
HN 5 1.03 Å, CaHa 5 1.09 Å, NCa 5 1.47 Å, NC9 5 1.33

Å, and C9Ca 5 1.52 Å, as well as tetrahedral symmetry and
lanarity of the peptide backbone, have been assumed.

escription of the Pulse Sequence and Experimental Re

The pulse sequence which is shown in Fig. 12 is essen
HNCOCA-like experiment (26). A correlation between th

two pairs of atoms Ck
a–Hk

a and Nk11–Hk11
N is achieved b

excitation of double- and zero-quantum coherences durint 2.
Starting from the proton Hk11

N , magnetization is transferred
the nitrogen Nk11. After a further INEPT transfer over C9k,

agnetization is finally located on the carbon Ck
a. Through

application of two simultaneous 90° pulses on15N and 13Ca,

FIG. 10. Schematic representation of the peptide backbone with bac
anglesf, c, v, andu of amino acidsk andk 1 1 in a protein. Assuming
planar backbone geometry, the measured angleu can be correlated with th
backbone anglec (see text). The plane which is spanned by the atoms Hk

a, Ck
a,

and Nk11 is highlighted graphically.

FIG. 11. (a) Correlation of the anglesu andc in the protein backbone f
s diamonds (b) Distance between the Hk11

N and the Hk
a proton as a function
ate
e

of

e

lts

lly

DQ and ZQ coherences are excited for a constant timet0. The
delayt0 is optimized with respect to the CaCb coupling.

Protons are not decoupled duringt 2. Application of the
pictographical analysis from the preceding section tells us
all cross-correlated relaxation rates, dipole/dipole as we
dipole/CSA, evolve duringt0. The experiment is symmetr
aroundt 2. In the backtransfer step to the detected proton Hk11

N ,
a COS-CT (coherence order selective coherence transfe
ment is employed for optimal sensitivity.

For the design of pulse sequences that measure cross
lated relaxation rates, pulse sequence elements affect th
lution under relaxation in a certain predictable way. Thi
quite different from autocorrelated relaxation where pulse
quence elements normally do not affect relaxation. This s
section introduces some rules of calculation for how an e
tive Liouvillian can be calculated in a pulse sequence.
though several papers have been published on average L
lian theory (27), these simple rules have not been demonst
o far.
Pulses of 180° allow us to manipulate the evolution

eteronuclear cross-correlated relaxation in a similar wa
hey allow us to manipulate the evolution of couplings
hemical shifts in heteronuclear spin systems. A train
80°(1H) is used, e.g., in15N relaxation measurements, to

rid of the dipole–CSA cross-correlated relaxation rates28).
The time evolution of the density matrix under the Hami
operator and the relaxation superoperator is given by

ŝ • 5 i @Ĥ, ŝ# 2 Ĝ̂~ŝ 2 ŝ0!. [24]

Ignoring the inhomogenous part and assuming weak
pling and the secular approximation for the relaxation su

operator we can treat the evolution underĜ̂independently fo
ach eigencoherence of the HamiltonianĤ:

ŝ • 5 2Ĝ̂ŝ. [25]

ne

Fig. 10. Values of pairs ofu andc found for the protein rhodniin are depict
the backbone anglec in a protein.
rom
a of
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56 REIF ET AL.
Incorporation of ap-pulse in the pulse sequence leads to
equation of motion

~P̂̂ŝ! • 5 2Ĝ̂~P̂̂ŝ!. [26]

p-Pulses have the property that for many relaxation me
nisms either the commutator or the anticommutator vanis

@Ĝ̂, P̂̂# 5 Ĝ̂P̂̂ 2 P̂̂Ĝ̂ 5 0 or @Ĝ̂, P̂̂#1 5 Ĝ̂P̂̂ 1 P̂̂Ĝ̂ 5 0.

[27]

n the first case, evolution of coherence under a certain r
tion is not affected by thep-pulse:

P̂̂ŝ • 5 ~P̂̂ŝ! • 5 2Ĝ̂P̂̂ŝ 5 2P̂̂ Ĝ̂ŝ. [28]

n the second case, the sign of the evolution is changed:

P̂̂ŝ • 5 ~P̂̂ŝ! • 5 2Ĝ̂P̂̂ŝ 5 1P̂̂Ĝ̂ŝ. [29]

FIG. 12. HNCOCA-like pulse sequence for the measurement of N–N,

1. Delays are as follows:D 5 5 ms,t 5 35 ms, 2t9 5 9 ms,t0 5 26 ms
90° and 180° pulses on Ca and C9 resonances. If not otherwise indicate
f 5 5 8(x), 8(2x); f rec 5 f1 1 f2 1 f3 1 f5. Quadrature int 2 is achie
oherences are selected duringt 1 by inversion of phasesf 6 5 2y togeth
y 90° in subsequent FIDS and stored separately to be able to diff
ecoupled during acquisition using MLEV-expanded CHIRP pulses33).

nteractions considered are inverted at (t0 1 t 2)/ 2. Since the cross-correl

CH,NH, GN,NH, GN,CH, GC,CH, andGC,NH evolve duringt0.
e

a-
s.

x-

In this case, thep-pulse in the middle of two equal delays le
to refocusing of the effect of the relaxation mechanism. S
relaxation superoperators are derived from double comm
tors, we present some simple rules to easily see the effec
p-pulse on a given relaxation rate. We assume we have
operatorsÂ, B̂, whose cross correlation is a source of re

tion. The relaxation superoperator is then given by

Ĝ̂ 5 @Â, @B̂,## 1 @Â†, @B̂†,##.

A p-pulse on any coherences can be written as

P̂̂ŝ 5 P̂ŝP̂†,

whereP̂̂ is the superoperator effecting ap-rotation andP̂ is the
corresponding operator.

The two operatorsÂ andB̂ shall be affected by thep-pulse
n the following way:

Ha projection angles. DQ and ZQ coherences evolve chemical shift d
1.2 ms. G3 and G4 Gaussian cascades (31) have been used as select

F pulses have phasex. f 1 5 x, 2x; f 2 5 2(x), 2(2x); f 3 5 4(x), 4(2x);
d by variation of phasesf3 andf4 in States–TPPI manner. Echo–antie
ith the sign of the second gradient (32). The phasesf3 andf5 are shifted

ntiate DQ and ZQ coherences duringt 2. Aliphatic and carbonyl resonances
torial representation of the CSA and the dipolar coupling evolution

d relaxation behaves like the product of the interaction that is cross co
HCa–
,e 5
d, R
ve

er w
ere
(Pic
ate
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57MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS
P̂̂Â 5 sAÂ, P̂̂B̂ 5 sBB̂ or P̂̂Â 5 sAÂ†, P̂̂B̂ 5 sBB̂†,

[30]

with sA, sB 5 61. These equations are true for all operator
Table 1 except for the case discussed below. Then it fol
that

Ĝ̂P̂̂ŝ 5 sAsBP̂̂Ĝ̂ŝ. [31]

Thus, if sAsB 5 1 we have@Ĝ̂, P̂̂# 5 0 and ifsAsB 5 21 we

ave@Ĝ̂, P̂̂#1 5 0. An example to illustrate the commuta
relations is described in Appendix 3.

Thus, it is sufficient to know whether thep-pulse invertsÂ
sA 5 21) or not (sA 5 1). The same holds forB̂. We can
ictorially represent the inversion of an interaction as dep

n Fig. 12 by drawing horizontal lines, the upper represen
ositive evolution of the operatorsÂ or B̂ and the lower if it ha
een inverted. For a given cross-correlated relaxation rat
equence is segmented in the periods in which there is no

TAB
Tensor Operators in the Rotating Frame and Modified

Tensor operators for the
dipolar interaction Tensor operators for

interaction

bkl 5 2m0

gkg l\

4pr kl
3 bk 5 1

3 ~s i 2 s'

q Âkl
(q)( Î k, Î l) Âk

(q)( Î k)

22 Î3
8 Î k

2Î l
2 —

21 Î3
8 Î k,zÎ l

2 —

21 Î3
8 Î k

2Î l ,z Î3
8 Î k

2

0 Î k,zÎ l ,z Î k,z

0 2 1
4 ~ Î k

1Î l
2 1 Î k

2Î l
1! —

11 Î3
8 Î k

1I l ,z Î3
8 I k

1

11 Î3
8 Î k,zÎ l

1 —

12 Î3
8 Î k

1Î l
1 —

Note.The calibration has been chosen such thatr 4p
1 F (q)(u, f) F (2q)(u, f)
f
s

d
g

he
ign

hange forÂ or for B̂. Then the weighted sum over the tim
s formed with the weights beingsAsB for each time segme
(Fig. 12).

In the autocorrelated casesA 5 sB and thereforesAsB 5 1.
Therefore, autocorrelated relaxation is not affected by
application of ap-pulse and cannot be inverted by it. Ther
only one exception to this rule for the operators of Tab
which is discussed in the appendixes. For the cross-corre
case, we consider here two examples.

(a) Dipole–dipole cross-correlated relaxation.

Ĝ̂ 5 @Hz
NNz,@Hz

CCz,## [32]

Application of ap(15N)-pulse or ap(13C)-pulse leads tosAsB 5
21 and therefore refocusing of the cross-correlated relaxa
A p(1H)-pulse, however, does not affect the relaxation s
sAsB 5 11. This is used in the sequence of Fig. 12 where
p(15N)-pulse andp(13C)-pulse leave the HN, CH dipolar cro
correlated relaxation invariant.

1
erical Harmonics for the Dipolar and CSA Interaction

CSA

Modified spherical harmonics Frequency
0

Fk
(q)(u, f), Fkl

(q) (u, f) v q

Î3
2 sin2u exp~ 1 2if!

v( Î k) 1 v( Î l)

=6 sin u cosu exp(1if) v( Î l)

=6 sin u cosu exp(1if) v( Î k)

3cos2u21 0
3 cos2u 2 1 v( Î k) 2 v( Î l)

=6 sin u cosu exp(2if) v( Î k)

=6 sin u cosu exp(2if) v( Î l)

Î3
2 sin2u exp(22if) v( Î k) 1 v( Î l)

osu )df 5 4
5 , independent ofq.
LE
Sph

the
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(b) CSA–dipole cross-correlated relaxation.

Ĝ̂ 5 @Î3
8 N1, @Î3

8 Hz
NN2,##

1 @Î3
8 N2, @Î3

8 Hz
NN1,## 1 @Nz, @Hz

NNz,## [33]

Application of ap(15N)-pulse or ap(13C)-pulse leads tosAsB 5
1,

P̂̂N2 5 N2† 5 N1,

whereas ap(1H)-pulse leads to refocusing of the interact
(sAsB 5 21).

The pictorial representation used in Fig. 12 depicts
evolution of each of the Hamiltonians of interest during
periodt0. All operators are inverted after (t0 1 t 2)/ 2 leading
o the full evolution of all cross-correlated relaxation rates
riginate from any of the magnetic interactions.
The DQ/ZQ HNCOCA experiment has been applied to

rotein rhodniin which is a thrombin inhibitor. The prot

FIG. 13. 1D strips from the 3D DQ/ZQ HNCOCA for the residues K
S90, and L40 in rhodniin corresponding to backbone anglesc k21.
e
e

t

e

consists of 103 amino acids and folds into two domains w
are connected via a flexible linker. Each domain contai
triple-strandedb-sheet and aa-helical region. Experimental
obtained spectra are shown in Fig. 13. The doublet of do
lines is not completely symmetric with respect to the reson
frequency. This is due to a differentX–CSA contribution
which can be observed on the multiplet lines correlated
the 1JHX coupling (X 5 Ca or N, respectively).

The cross-correlated relaxation ratesGNH,CH
c can be extracte

from the intensities of the linesaa, ab, ba, andbb with the
procedure described above.

Cross-Correlated Relaxation Rates as a Tool for Structur
Refinement in Restrained MD Simulations

a. Dipole(15N–1HN)–Dipole(13Ca–1Ha). The extracted cros
orrelated relaxation rates are used as restraints in the X-P
rotocol to refine the backbone anglec. The starting structures f

theG-refinement have been generated using the simulated a
ing protocol developed by Bru¨nger for X-PLOR (29). It consists
f a 32.5-ps high-temperature phase at 2000 K, a first 2
ooling phase to 1000 K, and a second 10-ps cooling phas
nal temperature of 100 K. A total of 1645 unambiguous an
mbiguous NOE restraints have been taken into account as w
2 dihedral restraints for thef- and 28 dihedral restraints for t

x1-angles. In addition, 34 hydrogen bonds have been identifi
slow proton exchange of which 16 hydrogen bonds are im
mented as ambiguous. The 30 structures with the lowest
energy out of 200 structures are chosen for further refinemen
averagec-angles for the unrefined structures are shown in Fi
together withGNH,CH

c as a function ofc.

FIG. 14. Graphical representation of the extracted dipole(NH)k11–
dipole(CH)k cross-correlated relaxation rates as a function of the back
anglec k as found from structure calculations before refinement. The soli
corresponds to Eq. [16]:GNH,CH

c 1 1
2 (W2 2 W0) as obtained with WTEST fo

a correlation timetc 5 6.0 ns.
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59MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS
Dipole(NH)–dipole(CH) cross-correlation rates tend to
sume positive values forb-sheet regions, whereas they
around zero fora-helices. Coils and turns show negative ra
The theoretical angle-dependent cross-correlation rate is d
with a solid line in Fig. 14. The curve was simulated with
program WTEST (11) assuming an overall correlation time
the molecule oftc 5 6.0 ns. This value is consistent with15N
elaxation measurements (30) that yield a value of 6.4 ns fo
he second domain and a value of 5.4 ns for the first doma
hodniin. In Fig. 15 thef- and c-angles of all 30 unrefine

structures are depicted in circle diagrams as obtained
MOLMOL. The count for the structures is encoded in
radius. Thus a straight line from the center of the circle to
diameter like forc38 indicates that the same value is obtai

FIG. 15. Circle diagrams of thef- andc-angles of all 30 structures bef
relaxation rates; shaded in darker gray are all angles which will be add
diagrams in this paper have been prepared with the program MOLMOL34)
-

.
wn

in

m

e
d

for all 30 structures. The dashed line indicates 0 for the an
value; the values increase clockwise. Shaded in light gra
angles restrained by dipole–dipole relaxation rates; shad
darker gray are angles which will be additionally restraine
dipole–CSA relaxation rates in a further calculation.

The refinement is performed by a 100-ps restrained MD
all restraints included which have already been used in
simulated annealing plus 30 dipole–dipole cross-corre
relaxation rates. Since the dependence of the relaxation r
thec-angle can be approximated by a Karplus-like functio
the formG ij

c(c) 5 25.536 cos2(c 2 119°) 1 10.332 cos(c 2
119°) 2 12.309 fortc 5 6 ns, the additional energy term
accounted for by making use of the parabolic potentia
coupling constant refinement already implemented

refinement. Shaded in light gray are all angles which will be restrainedGCH,NH
c

nally restrained by dipole–CSA relaxation rates in a second calculatioAll circle

ore
itio
(.
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60 REIF ET AL.
X-PLOR. During the run, the force constant for theG-restraints
is increased exponentially with time. Several calculations
been carried out using different final force constants. The
constants for theG-restraints were optimized such that
standard deviation of the calculated relaxation rates re
their approximate experimental error. Thus, 1.25 kcal m21

Hz22 turned out to be a reasonable value for the final f
onstant. Variation of theG error (which is defined in the sam

way as theJ-error in the X-PLOR help function (29)) betwe
0 and 5 Hz did not have any effect on the results either fo
regions with secondary structure or the loops except for a l
energy, the larger theG error was.

Figure 16 shows the experimental cross-correlation
NH,CH
c together with the respective averagec-angles after thi

refinement procedure.
The rms difference for the relaxation rates to the experim

tal value decreases from 7.87 Hz for the starting structur
0.97 Hz for the final structures. The average energy o
G-restraints drops from 2167.2 to 11.4 kcal/mol; the t
energy rises from 663.9 kcal/mol for the protein withoutG-re-
straints to 833.9 kcal/mol for the restrained protein. For
restraint there are four and for another restraint there are
violations larger than 3 Hz in 30 structures. There are
violations larger than 5 Hz in any of the structures. The ave
standard deviation to the mean calculated relaxation
amounts to 0.42 Hz. Most of thec-angles converge to a sing
value except those of the residues T22, C27, D73, and
which converge to two different values (c22

1 5 177.0°,c22
2 5

1159.9°;c27
1 5 268.5°,c27

2 5 251.1°;c73
1 5 149.2°,c73

2 5
220.9°; c91

1 5 178.7°, c91
2 5 1159.0°). To illustrate thi

effect, we have chosen the circle representation in Fig

FIG. 16. Graphical representation of the extracted dipole(NH)k11–
dipole(CH)k cross-correlated relaxation rates as a function of the back
angle c k as found from structure calculations after refinement withGCH,NH

c

dipole–dipole relaxation rates.
ve
ce

ts

e

e
er

es

n-
to
e
l

e
ee
o
ge
es

1,

7.

Shaded in light gray are all restrained angles; shaded in d
gray are the four angles with two different values.

Due to the refinement, the rms difference for the N
restraints rises from 4.473 1022 to 5.06 3 1022 Å. The
average rmsd value to the mean structure for the back
atoms rises from 0.39 Å to 0.46 Å for the core region of
first domain (amino acids 14 to 48) and from 0.34 to 0.43 Å
the core region of the second domain (amino acids 66 to

b. CSA(15N)–Dipole(13Ca–1Ha). Similar to a Karplus rela-
tion, the 3 cos2u 2 1 function of the cross-correlated relaxat
ate can also assume differentc-values for one single cros

correlation rate. The main axis of the15N CSA tensor does n
lie parallel to the N–H bond. Therefore, the cross-correl
relaxation rateGN,CH

c between the (Ca–Ha) k vector and the Nk11

CSA tensor has a differentc-dependence thanGNH,CH
c and can

help to resolve thec-ambiguities (Fig. 18).
Figure 19 shows the dipole(CaHa) k–CSA(N)k11 cross-cor-

related relaxation rateGN,CH
c as a function of the backbone an

c k as found in structures calculated with X-PLOR before
refinement procedure.

The dependence of the CSA–dipole relaxation rate ca
fitted in the same way as that of the dipole–dipole relaxa
rate by a Karplus-like function. Here, one findsGN,CH

c (c) 5
10.042 cos2(c 2 119°) 1 7.971 cos(c 2 119°) 2 7.506 for
tc 5 6 ns. As the maximum value of the CSA–dipole re-
ation rate is approximately half as large as the maximum v
of the dipole–dipole relaxation rate, the force constant o
former is chosen four times as large as the force constant
latter to achieve a roughly equal weight of both classe
restraints. If one uses all 33 measured CSA–dipole relax
rates, some of them come into conflict with the dipole–di
relaxation rates. This could be due to the fact that one mea
the average relaxation rate of different conformations. T
can only be treated correctly by a refinement with ensem
averaged cross-correlated restraints which will be left to fu
work. For the present calculations, all conflictingG-restraints
were excluded so that one is left with 30 dipole–dipole an
CSA–dipole restraints. As in the calculations with dipo
dipole restraints only, thec-angles of residues T22, C27, a
P91 converge to two different values (c22

1 5 177.1°, c22
2 5

1160.2°;c27
1 5 269.6°,c27

2 5 250.8°;c91
1 5 174.4°,c91

2 5
1161.1°). The relation of populated conformations ofc73

shifts from 22:8 forc73
1 5 149.2°,c73

2 5 220.9° to 27:3 forc73
1

5 147.9°, c73
2 5 230.0°. Hence, this is a case where

dipole–CSA restraints resolve an ambiguity found with dip
dipole restraints alone. The values of the angles remain n
unchanged compared to the calculations without dipole–
restraints. The dipole–dipole relaxation rates after the re
ment are shown in Fig. 20; the dipole–CSA relaxation rate
shown in Fig. 21.

The circle diagrams in Fig. 22 illustrate the changed be
ior for anglec73.

ne



s 0.4
H SA
r r
t re
a th
r
d , t
t fro
6 ota
e tio

r toler-
a
e lax-
a re-
s to

39 to
.34
Al-
cids
the
the

are all

61MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS
Due to the refinement, the rms difference of theG-re-
traints drops to 1.24 Hz with a standard deviation of
z for the dipole– dipole and of 0.16 Hz for the dipole–C

estraints. There are no violations of theG-restraints large
han 5 Hz; two restraints are violated in 1 of 30 structu
nd one restraint is violated in 2 of 30 structures. During
efinement procedure, the total energy of theG-restraints
ecreases from 3113.7 to 140.4 kcal/mol. Nevertheless

otal energy rises compared to the unrefined protein
63.9 to 979.2 kcal/mol. In part, the increase of the t
nergy is due to the fact that the limitation of the relaxa

FIG. 17. Circle diagrams of thef- and c-angles of all 30 structures a
restrained angles; shaded with darker gray are the four angles which a
0

s
e

he
m
l

n

ates restrains the angles to a region smaller than the
nce typically used for dihedral restraints of630°, so the
ntire structure is slightly more strained than without re
tion rate restraints. The rms difference for the NOE
traints rises to 5.133 1022 Å. The average rmsd values

the mean structure for the backbone atoms rise from 0.
0.46 Å for the core region of the first domain and from 0
to 0.42 Å for the core region of the second domain.
though the local rmsd has small maxima around amino a
with double c-angles, the rmsd is also increased for
other regions of the protein. The overall structure of

r refinement with dipole–dipole relaxation rates. Shaded with light gray
me two values after refinement.
fte
ssu
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62 REIF ET AL.
protein does not change very much and its secon
structure is nearly unaffected by the refinement. The rm
the backbone atoms of the mean refined structure to
mean unrefined structure is 0.18 Å for the core region o
first domain and 0.31 Å for the core region of the sec
domain.

In principle, the cross-correlated relaxation rateGN,NH
c

FIG. 18. u9[(CaHa) k, CSA(N)k11] as a function of the backbone anglec k.
The orientation of the CSA tensor is taken from solid-state NMR spectra
14). Values are taken from Hartzellet al. (14b) (solid line) giving u9 5

rccos[0.2631 0.556*cos (c 2 119)] and Lumsdenet al. (14a) (dashed line
giving u9 5 arccos[0.2631 0.556*cos(c 2 119)].

FIG. 19. Graphical representation of the extracted dipole(CaHa) k–
CSA(N)k11 cross-correlated relaxation rateGN,CH

c as a function of the mea
backbone anglec k of the unrefined structures.
ry
of
he
e
d

between the15N CSA tensor and the N–HN vector as well a
the cross correlation rateGC,CH

c between the13Ca CSA tenso
nd the CaHa vector can also be obtained. However, th

rates can be measured more reliably by means of15N and
13Ca relaxation measurements and therefore are not g
here.

CONCLUSION

We have shown that cross-correlated relaxation r
either between two dipolar or one dipolar and one C

f.

FIG. 20. Graphical representation of the extracted dipole(NH)k11–
dipole(CH)k cross-correlated relaxation rates as a function of the back
anglec k as found after refinement with dipole–dipole and dipole–CSA re-

tion rates. The dotted diamond gives the position of the only spa
opulated second conformation.

FIG. 21. Graphical representation of the extracted dipole(CaHa) k–
CSA(N)k11 cross-correlated relaxation rates as a function of the back
anglec k as found after refinement with dipole–dipole and dipole–CSA re-

tion rates. The dotted diamond has the same meaning as in Fig. 20.
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63MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS
interaction, can be used for the determination of the s
ture of a molecule by means of NMR. These new struc
restraints are independent of any Karplus-type calibra
and therefore are especially valuable for the conformati
analysis of molecules where such a calibration is difficu
obtain. Furthermore, the effect of cross-correlated re
ation is not restrained to the analysis of local geometry
can be used for the determination of the relative orienta
between arbitrary directors within one molecule or betw
two molecules, if a correlation between these two ca
established. Especially for, e.g., deuterated proteins or

FIG. 22. Circle diagrams of thef- andc-angles of all 30 structures afte
gray are all restrained angles; shaded with darker gray are the three an
is restrained to a single value by additionally taking into account dipole
c-
al
n
al
o
x-
ut
n
n
e
o-

tein complexes, we expect this parameter to become a u
tool in the future.

APPENDIX 1

Hamilton Operators for the Dipole–Dipole and
the Chemical Shift Anisotropy Interaction

.1.1. Dipole–Dipole Interaction

The Hamiltonian describing the dipolar interaction betw
wo spins can be written in the form (12, 13, 19, 35)

finement with dipole–dipole and dipole–CSA relaxation rates. Shaded w
s which assume two values after refinement and shaded with dark grac73 which

SA relaxation rates.
r re
gle
–C
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64 REIF ET AL.
Ĥ kl
DD 5 bklH3

1

r kl
2 ~ Î kr kl!~ Î lr kl! 2 Î kÎ lJ

5 bkl O
q522

12

F kl
~q!~ukl, fkl!Â kl

~q!~ Î k, Î l!, [A1]

with

bkl 5 2m0

gkg l\

4pr kl
3 .

Thereby,g k andg l denote the gyromagnetic ratio of the nu
k and l , \ the Planck constant, andr the distance between t
wo nuclei. The anglesu kl, f kl refer to the orientation of th
vector r kl with respect to the applied field. The exact exp-
sions for the second-rank tensor operatorsÂkl

(q)( Î k, Î l) and the
time-dependent modified spherical harmonicsFkl

(q)(u kl, f kl) are
given in Table 1.

The second main relaxation mechanism is relaxa
through chemical shift anisotropy. The contribution to
Hamiltonian due to CSA in the principal axis frame (PA
of nucleusk and in the laboratory frame (LF) can be writ

s (12, 13, 19, 35)

Ĥ k
CSA,PAS5 gk O

i5x,y,z

Bi ŝ̂ ii
k Î i

k [A.2a]

Ĥ k
CSA,LF 5 bk O

q521

1

F k
~q!~uk, fk!Â k

~q!~ Î k!, [A.2b]

with

bk 5 1
3 ~s i 2 s'!gkB0

for axially symmetric CSA tensors. TheBi denote the compo-
ents of the applied fieldB0 in the PAS. In the LF, in analog

to Eq. [A.1], the CSA Hamiltonian can be separated into
time-dependent, orientational functionsFk

(q)(u k, f k) and the
ime-independent spin operator termsÂk

(q)( Î k) (12, 13, 35). The
xpressions for the second-rank tensor operatorsÂk

(q)( Î k) and
he time-dependent modified spherical harmonicsFk

(q)(u k, f k)
re again summarized in Table 1. The anglesu k andf k are the

polar coordinates of the main axis of the axially symme
tensors in the laboratory frame.

The convention we use forÂk
(q)( Î k) andFk

(q)(u k, f k) ensure
that the integral

4

5
5

1

4p
r F ~q!~u, f! F ~2q!~u, f!d~cosu !df
i

n
e
)

e

c

and therefore the spectral density functions

j ~q!~vq! 5
4

5

tc

1 1 ~vtc!
2

are independent ofq.
For Eq. [A.2b], we assumed an axially symmetric ten

However, this is no restriction of generality since each as
metric CSA tensor can be decomposed into a superpositi
two axially symmetric tensors: The bilinear form of the C
contribution to the Hamilton operator in the PAS from
[A.2] can be—after diagonalization of the CSA tensor—rew
ten as (35)

Ĥ k
CSA,PAS5 gk

sxx 1 syy 1 szz

3
B Î k 1

1

3
gk~sxx 2 szz!

3 @2Î k, xBx 2 Î k,yBy 2 Î k,zBz# 1
1

3
gk~syy 2 szz!

3 @2Î k,yBy 2 Î k, xBx 2 Î k,zBz#. [A.3]

The first term in Eq. [A.3] describes the isotropic part of
chemical shift, the second and third terms, the axially sym
ric anisotropic contributions. Equation [A.3] can be used
the description of cross correlation between arbitrarily an
tropic tensors since an asymmetric anisotropic tensor of ra
can be contracted from two axially symmetric tensors l
along orthogonal axes. Using Table 1,si 2 s' would bes xx 2
s zz with x as axis of reference due to the second term, andsi 2
s' would bes yy 2 s zz with y as axis of reference due to t
hird term in Eq. [A.3]. For the special case of a symme
SA tensor (s xx 5 s yy 5 s '), one finds

Ĥ k
CSA,PAS5 gk@s iÎ k,zBz 1 s'~ Î k, xBx 1 Î k,yBy!#

5 gkHs i 1 2s'

3
B Î k 1

s i 2 s'

3

3 ~2Î k,zBz 2 Î k, xBx 2 Î k,yBy!J , [A.4]

with s i 2 s ' 5 s zz 2 1
2 (s xx 1 s yy).

APPENDIX 2

Relaxation Superoperator and Spectral Density Functions

The relaxation superoperator in the Liouville–von Neum
equation,

d

dt
ŝ 5 2i @Ĥ0, ŝ~t!# 2 O

V,W

Ĝ̂V,W~ŝ~t! 2 ŝ~0!!, [A.5]
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65MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS
has the general form

Ĝ̂VWŝ 5 bVbW O
q

@ÂV
~2q!, @ÂW

~q!, ŝ## p j VW
q ~vq!, [A.6]

where the indicesV andW refer to the interactions that are
source for relaxation. The termj VW

q (v q) denotes the spectr
density function and is obtained by evaluating the correla
function of the spherical harmonics,

j VW
q ~vq! 5 E

0

`

dtF V
~q!~t! F W

~2q!~t 1 t!exp~2ivqt!. [A.7]

he bar indicates time average overt. In the autocorrelatio
ase (V 5 W), both interactionsV andW are originating from
he same source of interaction, e.g., the same pair of n
n the cross-correlation case, the time-dependent sph
armonics refer to different kinds of tensorial interacti
V Þ W).

The cross-correlation case only shall be considered in
ollowing. The theory for the description of intramolecu
ipolar interaction in coupled multispin systems has been
eloped some time ago (36–40). Formulae have been deriv
or the three cases of isotropic, axially symmetric, and ge
lly anisotropic reorientation which are given in the followi
review on this topic is found in Ref. (40).

.2.1. Spherical Top Molecules

The spectral density function for isotropic rotational di
ion has been derived by Hubbard and Kuhlmann and B
chweiler (36a, 37),

j VW
q ~vq! 5

2

5
~3 cos2uV,W 2 1!F 6D

~6D! 2 1 v q
2G

5
1

5
~3 cos2uV,W 2 1!F 2tc

1 1 ~vqtc!
2G . [A.8]

D denotes the diffusion constant, with 1/tc 5 6D. V and W
denote the different interactions.uV,W describes the projectio
angle between the principal axes of the two interactionsV and

. If V denotes, e.g., a N–H andW a C–H dipolar interaction
espectively, as indicated in Fig. 1,u is the included ang

between the two bond vectors N–H and C–H.

A.2.2. Asymmetric Top Molecules

The spectral density function for the asymmetric top
sumes the form (36c, 38, 40)
n

ei.
cal
s

he

e-

r-
.

e-

-

j VW
q ~vq! 5

1

10
p $12 cosuVcosuWsin uVsin uWsin fVsin fW

3
b1

b1
2 1 v q

2 1 12 cosuVcosuWsin uVsin uW

3 cosfVcosfW

b2

b2
2 1 v q

2 1 3 sin2uV

3 sin2uWsin 2fVsin 2fW

b3

b3
2 1 v q

2

1 F3 cos2S z

2Dsin2uVsin2uWcos 2fVcos 2fW

1 sin2S z

2D ~3 cos2uV 2 1!~3 cos2uW 2 1!

1 Î3 cosS z

2DsinS z

2D
3 ~~3 cos2uV 2 1!sin2uWcos 2fW

1 ~3 cos2uW 2 1!sin2uVcos 2fV!
b4

b4
2 1 v q

2

1 F3 sin2S z

2Dsin2uVsin2uWcos 2fVcos 2fW

1 cos2S z

2D ~3 cos2uV 2 1!~3 cos2uW 2 1!

2 Î3 cosS z

2DsinS z

2D ~~3 cos2uV 2 1!

3 sin2uWcos 2fW

1 ~3 cos2uW 2 1!sin2uVcos 2fV!
b5

b5
2 1 v q

2 J ,

[A.9]

where the notation of Woessner (41) has been used:

D 5 1
3 ~Dxx 1 Dyy 1 Dzz!

L 2 5 1
3 ~DxxDyy 1 DxxDzz 1 DyyDzz!

tan z 5 Î3 F Dxx 2 Dyy

2Dzz 2 Dxx 2 Dyy
G

b1 5 4Dxx 1 Dyy 1 Dzz

b2 5 Dxx 1 4Dyy 1 Dzz

b3 5 Dxx 1 Dyy 1 4Dzz
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66 REIF ET AL.
b4 5 6D 1 6ÎD 2 2 L 2

b5 5 6D 2 6ÎD 2 2 L 2. [A.10]

A.2.3. Axially Symmetric Top Molecules

For the case thatDxx 5 Dyy 5 D', Eq. [A.9] can be
simplified yielding the spectral density function of the sy
metric top rotator (Dzz 5 D i) (36b, 42).

j VW
q ~vq! 5 1

20 $~3 cos2uV 2 1!~3 cos2uW 2 1! JVW
q,0

1 12 cosuVcosuWsin uVsin uW

3 cos~fV 2 fW! JVW
q,1

1 3 sin2uVsin2uWcos~2fV 2 2fW! JVW
q,2%,

[A.11]

where the reduced spectral density functions (22 # m #
2),

JVW
q,m 5

2tc,m

1 1 ~vqtc,m! 2 , [A.12]

have been used. The correlation timestc,m can be rewritten a
diffusion constantsD i andD' according to

1/tc,m 5 6D' 1 m2~D i 2 D'!. [A.13]

.2.4. Inclusion of Internal Motion

Internal motion can be incorporated into the spectral de
ither by the Lipari and Szabo (43) approach or by explic
alculation of the motion from, e.g., motional models of m
ecular dynamics trajectories. In Eq. [A.7], the spectral de
ies are Fourier transformations of the motion of the mole
ith respect to the external magnetic field. This equa
ssumed that internal motion is absent. Rewriting the spe
ensities as a convolution (3) of a Fourier transformation

he global motion and the Fourier transformation of the l
otion, we find for the first termj V,W

q (v q) in Eq. [A.11] for
axially symmetric diffusion:

j VW
q,local motion~vq! 5 1

5 FT

3 $P2@cosuV~t!#P2@cosuW~t 1 t!# 3 JVW
q,0%uvq

1 · · ·

[A.14]

The Fourier transformation concernst; the average is take
with respect tot. P2[cosu] denotes the Legendre polynomi
(3 cos2u 2 1)/2. If we assume the internal motion to

ncorrelated and fast with respect to the global motion,
-

ty

-
i-
le
n
ral

l

q.

A.14] can be directly used to compare field-dependent ex
mental relaxation rates with predicted rates and for the
sis of molecular dynamics trajectories or for the analys
odels.
Application of the Lipari and Szabo approach assume

ddition an exponential decay of the correlation function
he characteristic ratet i from time 0 to the timet according to

P2@cosuV~t!#P2@cosuW~t 1 t!#

5 expS2
t

t i
D $P2@cosuV~t!#P2@cosuW~t!#

2 P2@cosuV~t!#P2@cosuW~t 1 `!#%

1 P2@cosuV~t!#P2@cosuW~t 1 `!#

5 HexpS2
t

t i
D @1 2 ~SVW

q,0! 2# 1 ~SVW
q,0! 2J

3 P2@cosuV~t!#P2@cosuW~t!#, [A.15]

here (SVW
q,0) 2 is the order parameter for the respective inte-

tion andt i corresponds to the internal correlation time (44, 45).

APPENDIX 3

Transformation Properties of Relaxation Superoperators
under p-pulses

The transformation of the relaxation operators un
p-pulses is described in Eq. [31]. There is, however,
exception to this rule for the operators of Table 1. A selec
p-pulse on spinI k applied toÂkl

(62)( Î k, Î l) 5 =3
8Î k

6 Î l
6 leads to

P̂̂k,x=
3
8 Î k

6 Î l
6 5 =3

8 Î k
7 Î l

6. Conversely,P̂̂k,x=
3
8 Î k

7 Î l
6 5 =3

8

Î k
6 Î l

6. Thus these operators are not transformed into thems
or their hermitian conjugate. For example, we find for a re
ation superoperator,

Ĝ̂P̂̂k, xŝ 5 bklbkn j ~0!~0!@2 1
4 ~ Î k

1Î l
2 1 Î k

2Î l
1!,

@2 1
4 ~ Î k

1Î n
2 1 Î k

2Î n
1!, P̂̂k, xŝ##

5 bklbknj
~0!~0!P̂̂k, x@2

1
4 ~ Î k

2Î l
2 1 Î k

1Î l
1!,

@2 1
4 ~ Î k

2Î n
2 1 Î k

1Î n
1!,## 5 P̂̂k, xĜ̂9ŝ. [A.16]

Application to the NOESY experiment with a selective inv
sion pulse on spinI k in the middle of a mixing time yields th
transformation
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Ĝ̂P̂̂k, xÎ kz 5 bklbkl j
~0!~0!@2 1

4 ~ Î k
1Î l

2 1 Î k
2Î l

1!,

@2 1
4 ~ Î k

1Î l
2 1 Î k

2Î l
1!, P̂̂k, xÎ kz##

5 bklbklj
~0!~0!P̂̂k, x@2

1
4 ~ Î k

2Î l
2 1 Î k

1Î l
1!,

@2 1
4 ~ Î k

2Î l
2 1 Î k

1Î l
1!, Î kz# 5 P̂̂k, xĜ̂9 Î kz. [A.17]

The double commutator yields

Ĝ̂ Î kz 5 bklbkl j
~0!~0!@2 1

4 ~ Î k
1Î l

2 1 Î k
2Î l

1!,

@2 1
4 ~ Î k

1Î l
2 1 Î k

2Î l
1!, Î kz##

5 bklbkl j
~0!~0!~ Î kz 2 Î lz! [A.18]

and

Ĝ̂9 Î kz 5 bklbkl j
~0!~0!@2 1

4 ~ Î k
2Î l

2 1 Î k
1Î l

1!,

@2 1
4 ~ Î k

2Î l
2 1 Î k

1Î l
1!, Î kz##

5 bklbkl j
~0!~0!~ Î kz 1 Î lz!.

hus we arrive at the well-known fact that the autocorrel
ongitudinal eigenrelaxation ofÎ kz is not refocused by anÎ k-
selective inversion pulse whereas cross relaxationÎ kz 3 Î lz is
suppressed (Fig. 23) (46).
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