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Theory, experimental aspects, and use in structure calculation s the dipolar interaction between directly bound nuclei. In tw
of cross-correlated relaxation rates measured on zero- and double- pairs of nuclei (A_A2 and Bl_Bz), projection angle dependent
quantum coherences in liquid state NMR are presented. The rel-  cross-correlated relaxation rates due to two dipolar couplin
ative size of the interaction depends on the projection angle be- I'S1p2 02 Of double- and zero-quantum coherences betwe

twegn the two.tensorlgl |ntera}ctlons. The tengorlal |r1teracF|0n can  uclei A and B' can be measured provided the following
be either a dipolar interaction or a chemical shift anisotropy . . .
requirements are fulfilled:

relaxation mechanism (CSA). Effects of additional sources of
relaxation on the cross-correlated relaxation rates are analyzed. (@) The desired double- and zero-quantum coherence |
Also, an easy-to-use formalism is given to manipulate different veen nuclei A and B! can be excited.

cross-correlated relaxation interactions. The application addresses (b) There are couplings such that antiphase coherences
measurement of the backbone angle ¥ in a protein by measuring 1 2

dipole(*N-"H)_dipole(*C™_'H® and CSA(*N)-dipole(*C*— ?ggiﬁséd and A* as well as between Band B can be

'H®) cross-correlated relaxation rates. It is shown that ambiguities h . | . f inal h
due to the 3 cos’#-1 dependence of one cross-correlated relaxation (c) The main relaxation source for single-quantum cohe

- ) . 5 )
rate can be overcome by measuring additional cross-correlated ~€NCe Of A (SQC) is the d'polar coupling to Aand the main
relaxation rates. The use of cross-correlated relaxation rates is relaxation source of SQC of'Bs the dipolar coupling to B

demonstrated in structure calculations. © 2000 Academic Press The dipole tensor between two spiné and A2 (Bl and Bz)

is axially symmetric with the axis of symmetry collinear to the
bond defined as the internuclear vecfotA®. The structural
implication of the angular dependence of the interaction of tw

Recently, we introduced a new structural parameter inéiPole tensordA'A* and B'B? is therefore straightforward. It
high-resolution NMR that uses cross-correlated relaxation @f€ctly defines the interbond angle. For cross-correlated rele
double- and zero-quantum coherences to extract structural §On rates involving chemical shift anisotropy (CSA), the CS/
formation (). The parameter allows the measurement of prénSor needs to be determined in the molecular frame eitt
jections of tensorial interactions onto each other. As opposed@Perimentally or by quantum chemical calculations. The latt
NMR of liquids, such projections of tensors have been detdgduirementis not always fulfilled and makes the measureme
mined and interpreted in structural terms in solid-statzl of dipolar cross-correlated relaxation rates easier to interpi
field separated(2), spin diffusion @), or multiple-quantum from a structure point of view: _

NMR spectroscopy4). For the last approach, the orientation of To f_urther illustrate the principle of the_ cross-correlate
the two tensors with respect to each other can be derived fréffgxation, we assume that we have two pairs of vectorhA
the sideband pattern of the multiple quantum coherences.apd B—B” spanning an anglé. We now describe the effects of
NMR of liquids, however, magnetic interactions between tweyoss-correlated relaxation on the lineshape and line intensit
tensors of rank 2 which belong to different heteronuclei c&f double-quantum (DQ) or zero-quantum (ZQ) coherenc
only be measured via double- and zero-quantum coheren¥éd) active nuclei A and B (Fig. 1).

and detected through relaxation. The main source of relaxation'N€s€ DQ and ZQ coherences evolve chemical $hift +
Qg andQ,: — Qg respectively. A doublet of doublet of lines

! Present address: Institut rftOrganische Chemie und Biochemie, Tujg generated with splittings due to scalar coupling@", A2)
ML:nchen, Lichtenbegstr4 D-é_35747 Garching, Qermany. and J(Bl’ BZ) if A2 and B are not decoupled during this
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37077 Gatingen, Germany. coupling constants are positive. In the absence of cross-cor

45 1090-7807/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.

INTRODUCTION



46 REIF ET AL.

a b f=tan-1(21/2)=54.7° coupled. Quantitative interpretation of the spectra with respe
A2 P r— to the size of the involved anghy, . is very difficult since the
| ——— > multiplets are affected by scalar couplings and relaxatiol
Al B2 Tane Jaig which are difficult to disentangle.
re\,Bl/ Vold et al. (7) have shown on dilute solutions of trisubsti-

tuted benzenes such as 1,2,3-trichlorobenzene that cross-
relation rates can also be used to determine the motior
Double Quantum A+ anisotropy of a molecule. Since the r&efor each individual

Coherence: DQ line is a function of the corresponding spectral density for th

4 Az transition between the respective spin sta&s0,,, D,,, and
¢ » w2 ‘? D,, can be estimated after calculation of the transition prob:

A’ B Al . bilities for a AB, spin system—assuming a nonspherical reor
D6=90 entational process.

B1—B2 Another experiment that has been recorded to character
hindered or unhindered rotation of side chains in a proteih (
was introduced by Ernst and Ern8) (n 1994. Sign changes in
the cross-correlation rate are interpreted as a function of t
motional model of the side chain. However, all these ay
proaches did not provide structural information in a simpl
way.

In the following, a mathematical description of the effect o

FIG. 1. (a) Cross-correlated relaxation of double- and zero-quantum cdipole—dipole and dipole—CSA cross-correlated relaxation
herences: The requirement imposed on the spin system is that there are &gp tion NMR will be given.
pairs A—A? and B-B% The couplingsJ(A', A% and J(B', B%) must be
resolved. In addition, the dipolar relaxation-#A> and B'—B? should be the
main source ofT, relaxation of A and B, respectively. (b—d) Schematic
multiplet pattern observed for intervectorial angle® of 54.6°, 180°, and 90°. THEORETICAL DESCRIPTION
The cross correlation of relaxation leads to different linewidths for the multi-
plet components.

0=0",180" Al B!

T T
Q1425 Q1+

Cross-Correlated Relaxation of Zero- and Double-Quantum

Coherences
lated relaxation, all four multiplet components would have the

same linewidth and intensities (Fig. 1ky.and 8 denote the  In the following, we consider two spin pairs, a N*Mector
polarization of A and A%, respectively. Including the effects ofand a C—H" vector in a protein, for which we excite double-
cross-correlated relaxation, the relative intensities of the linead zero-quantum coherences between N &hd e equation
are different depending on the relative orientation of the twaf motion for the different components of double-quantum an
vectors. If the two vectors AA® and B-B’ are oriented zero-quantum coherences,>”° under the influence of the
parallel to each other, the outer two lines are broader than #walar coupled, directly bound, protons has the general forr
inner lines (Fig. 1c). The opposite is true for orthogonal ori-
entation of the two vectors (Fig. 1d). Equal intensity for all four
I(;nist ;isrreil(s\o@c;bt:|2:d7 lf(tlgz .tvilg)?/ectors span thagic angle (&B,?L/’ZQ)' _ [—foema _ oo (&B%ZQ)- (1]
Cross-correlated relaxation has already been used in the past
in high-resolution NMR as well. Dalvit and Bodenhauséip ( 00120 .
introduced in 1988 a triple-quantum-filtered NOESY for sin! € termsa, ;™ summarize the double- and zero-quantur
gle-quantum coherences only where a system of three nucfherences  QN"HEHY, C'NTHEHY, C'N'HEHY, and
H., H°® and H°S, in a protein is investigated to yieldC N"HEH{. HEHY (. n’ = a, B) stands for the spin polar
structural information about the side chain conformation. TH&ation operators of the nitrogen- and carbon-bound protor
complementary experiment applicable for biomacromoleculegspectively. The isotropic chemical shiff?* (the index DQ
is the triple-quantum-filtered ROESY, published by~ &ru refers to coherences'”, ZQ to coherences QN ; for the
chweileret al. (6) in 1989. The drawback of the two experi-hermitian conjugate coherencesNC and C' N™, all signs in
ments is their inherently low sensitivity which is due to thé&q. [2] are inverted) for the four resonance lines wjih &) =
large distances of the spins involved. Furthermore, the expéee), (aB), (Ba), and (3B) of the doublet of doublets is given
iments can only be carried out if the involved nuclei are scalby
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I + Jen 0 0 0
0 Tl + J 0 0

0P = | (.= Q)L+ 7 0 N”O cH 3= Jan 0 . 2]
0 0 0 Ty — Jen

Q¢ andQ, are the carbon and nitrogen chemical shifts &hg, and*J,, the relative chemical shifts of the different multiplet
lines due to the scalar coupling. The relaxation mdifi®”?® has the form

re+r,+ FES/ZQ _FTl(HN) _FTl(HC) -W,
l'iDQ/ZQ o —T'r(HY) re+r,+ FB;?/ZQ —W, _FTl(HC)
B _FTl(HC) _Wo re+ Fl + FBS/ZQ _FTl(HN)
W, _FTl(HC) _FTl(HN) re+r,+ FE;?/ZQ
r,= FTl(HN) + FTl(HC)- [3]

In the relaxation matrix ™%, the termI'>% denotes the aNd from cross-correlated relaxatiovt ¢ W),

different cross-relaxation rates due to the heteronuclear dipolar

mteractlon including the dipole—dipole cross- relaxatlon rate [F°
wnens the CSA-—dipole cross-relaxation ratég ., 't

I'éen, and I'icy, and the secular part of the relaxation of 2

double-quantum and zero-quantum transitions due to NOE = byibcn >, [AGP, [AS, 6597 jihcn(wq)

between the protons"Hand H, W, andW,. The nonsecular g=-2

part of the latter mechanism is reflected in the off-diagonal 5

elementsW, and W,. I'* contains the contributions due to A(=q) TA(@ ~DOZ

autocorrelated relaxation and external relaxation of C, + brnben 2 [Ac”s [ARh 67571 i Bupn(wq),

N-DQ/ZQ coherenced '+, (H") andI'1,(H®) denote the con

tributions due tdl, relaxation of the proton directly attached to [5]

the carbon and nitrogen, respectively. The influence of non-

secular contributions in the relaxation matfi?®?® on the i whichV = NH andW = CH. In the autocorrelation case, the
angle-dependent dipole—dipole cross-relaxation rate is Gigtaxation superoperator contains second-rank tensor opera
cussed in detail later in this article. Secular contributions &emming from only one interaction, whereas in the cros:

nen + e NH](U'DQ/Z

q=-2

FDQ/ZQ are discussed in the following. correlated case, double commutators containing tensor ope
tors from two distinct interactions have to be evaluated. In tt
Dipole—Dipole Cross-Correlated Relaxation secular approximation, only double commutators with a La

In the following, we focus on the relaxation due to th
heteronuclear dipolar couplings. The relaxation superoperal
in Eqg. [A.6] which acts on double- and zero-quantum cohe,
ences contains contributions from autocorrelated relaxati
(V = W = dipole NH or dipole CH),

or frequency of 0 contributeride infra). The termsb, and
(g' are given in Eq. [A.1]. The expressions for the differen
relaxation rates for auto- and cross-correlated relaxation sh
éﬁ illustrated in the following. As an example, the doubl
commutator from Egs. [4] and [5] is applied to double-quan
tum coherences QN "HEHY' . For clarity, the operator symbols
. on the proton, carbon, and nitrogen operators are omitted in t

[T Rnnn + T aucl (6097 following. The complementary expressions T H4HE and
zero-quantum coherences behave accordingly. The four ter
b2, E AGY, [AW, 50979 C'N HEHE (u, u' = a, B) corresponding to the four multiplet
(A", [AN, 11 Runn(@q) lines of the doublet of doublets are subjected to the differe
=2 double commutators for auto- and cross-correlated relaxatic
This is summarized in Fig. 2. Note that the result of the doub

E [AGY, [AQ, 6097] 4y cfw,), [4] commutators differs only in sign due to the relatiopHd =
a=-2 1H*and HH? = — 1H". Note that the gyromagnetic ratio of N

=i»
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Rates
CtN+
afy oo o
Auto Correlation [ B BB B
(f;IIi,Mi +f‘2H,CH)C*N+HgHZ :bf,Hj,?,H‘N”[HZNN:,[H;VNZ,C*N+HgHZ]]+béung'CH[HZCCI,[H:CC:,C+N+H§(HZ]]= (-
=%(b:lﬂjg’H,NH +b(27Hj2H.('H k+N*HgHZ = +[FII\IIH,NH + 1—\({"H,CH KC+N+HZ'HI';)
Cross Correlation e
NH,CH
IS

(f“ILIH,CH +f‘:fH‘NH )C+N+HgH1iJ' =bNHbCHjI(\)IH,CH{H:NN: ‘[HZCCZ ’C+N+H((lelVl]]+ [HSC: ’[H:NNZ ’C+N*HgH;].]}:

=2buben j;)»/u,cuC+N+HgH; =+I0 cn (C*NJFHCHHZ)

Te4re J_LJJ

NH,CH

FIG. 2. Double commutators for dipole—dipole auto- and cross-correlated relaxation and respective rates in a graphical representation.

and the*J(N,H) coupling constant are both assumed to b@ouble commutator for cross-correlated relaxation betwec

negative. CSA(*C) and a dipolar coupling of N-H is given as an
In the autocorrelated case, as well as in the cross-correlate@mple in Fig. 3. Note that the cross-correlated relaxatic

case, thesingle line operator<C*N*HEHE are eigenoperators rates for the four lines differ only in sign but not in absolute

with respect to thg°(0) part. In the autocorrelated case, alalue. Therefore, they can be summarized as shown in F

lines relax equally fast, whereas in the cross-correlated ca3eNote that the assignment of the order of the spin pola

for the two pairs of linesxa and BB, as well asxp andBa, the

rates have the same absolute value, but opposite Sign. THRie-csa cross corretated relaxation

right-hand side of Fig. 2 shows a graphical representation of

the respective rates. Altogether, the multiplet is governed by[ﬁﬁH‘N+lﬁ"‘;,vC,,)C*N*HgH,‘j -

superposition of the rates & and Iy, ¢y, Which is indicated O N R T e T
by the sum of the two rates at the bottom at the right-hand side  __; ;. »  c'n-usns o
Of F'g 2 :_F;v',(H(C+N+HgHz)

For the simplest case of isotropic reorientation, the dipole—
dipole cross-correlated relaxation rate for each multiplet line of
the doublet of doublets according to Eq. [5], with the spectral

AT AT
density function given in Eq. [A.8] for a spherical top mole- DQ(C™N') ZQ(C'N7)
cule, can be written as Yoy Yam Uy Unm

2 af oo BB Ba ao af Pa BB
c _ YU YHYc [ Po } _
I'\h.cn (r) 2 (rep) ® \ 4ar h 5 (3 CO§0NH,CH e I I | | | | | |
6

[ ] 1ﬂc]\,f}LI,CH - + + - - + + -

C
Thereby, 6. c+ denotes the projection angle between the NIECCCH ot - - +  t - -
and the CH vector. I C.NH -t - + - + -  +

C
. . Dy en T - -+ o+
Dipole—~CSA Cross-Correlated Relaxation T, i _ 4 - 4 + 4

The cross-correlated relaxation between a dipolar coupling

and a CSA tensor, e.g., dipole(NH) with CSA(N) or _ . :

. . . . FIG. 3. Schematic representation of the dipole—CSA cross-correlated r
dipole(NH) with CSA(C)} contributes to the relaxation r"?lt(:"%xation rates of C, N DQ and ZQ coherences. The double commutator sen
of the four resonance lines. The rates for the CSA-dipoAg an example. The sign of the rates for the respective submultiplet line is giv
cross-correlated relaxation are derived from Eq. [A.6]. A the boxes.
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ization states of the multiplet components differs between (C*N*HgHE)
DQ and ZQ coherences.

For the double-quantum operator, the sums of the rates of = —b2. .\ Q(wuec — wyw)[— % (HEHN + HEHYD,
the cross-correlated spectral densities for C&2) and
CSA(*N) with dipole NH and CH, respectively, are observed. — L (HEHy + HgHY), CPNTHEHE]]
Accordingly, for the respective zero-quantum coherences, the
difference of the rates will be observed which allows us to — _ 12 iO(y, 0 — @) (HEHE — HEHY)CN™
determine each rate individually, as will be shown later. Ac-
cording to Eq. [5], together with Egs. [A.2], [A.3], [A.4], and = Wy(H&HE — HEHY)CN™* [8a]

Eq. [A.8], the general form for the dipole-CSA cross-corre-

lated relaxation rate can be written as for isotropic tumbling,
and similarly for (CN"HE&H;)". The respective double com
mutators forW, can be written as

c 2 Mo YHYc
FRen= — 15 YnBoTd 4 (ra)?
+ + o4 ) *
>< {(O-Xx - 0-22)(3 CO§0CH,U><X - 1) (C N HNHC)
+ (O-yy - 022)(3 COSZGCH’O.W - 1)}, [7a] = _baCHNj (2)((1)HC + wHN)

-
X [\ HEHG, [y3 HoHy, CTNTHEHE]]
where 6cy,,, and 6c,,, denote the angle between the CH

vector and the two principal components of the nitrogen CSA n [ HoH- [ HiH: C*N*HeH

tensor. An equivalent formulation is [\ HeHy, [ys HeHw, nHeElD

= = bicn P(wne + o) {(HEHY — HEHRHC N}

2 Ko YHYc apga
FrC\J,CH == 15 YnBoTdh yp. W = —W,(HgHY — H@Hﬁ)C*N* [8b]

X {(‘Tl = 0.)(3 coS ey — 1) and similarly for (CN*"H2H£)". Thus, the contribution to the
full relaxation matrix due to NOE is given by

3 ,
+ 4 (G 0y) (SiN*6cyy,,COS ZbCH,UXX)}. [70]

o2 hw, 0 0 —W,| 009
oog2? 0 +W, W, 0 || o™

If the (_ZSA tenspr is aiqally iymmetnc, Eq_. [7t.)] simplifies UBS/ZQ == 0 -w, +W, O Ugg/zq .
accordingly, settingr,, = o,, = o, ando,, = oy Ggg/zo ~W, 0 0 +W, GEE’ZQ

2 Mo YHYc [9]
c - _ - -
['Ren 15 YNBoTt 4m (1)
X {(o) — 0,)(3 coSOc,, — 1)}. [7c] The NOE contributes a secular and a nonsecular term. We w

see in the following that the nonsecular term can be ignore

However, the secular term remains and contributes to tl
The cross-correlated relaxation rates affect the different milinewidth of theaa, Bg line the rateW, and to thex3, Ba line

tiplet components differently. Therefore, other relaxation ratéde rateW,. This must be taken into account in the simulation

that behave similarly must be investigated as well. The NOEried out for the evaluation of the dipole—dipole cross-co

between the two protonsHand H leads to different relax related relaxation rat€g. c in the following section.

ation rates of theva and 8 lines compared to theB and B«

lines. A quantification of the size of this effect is given in thig 4ctical Extraction Procedure

subsection. The NOE between the two proton’ &hd H

stems from thg¢ @ (wyc — wpn) [Wo] and thej P (wyc + wpn) The relative signs of the relaxation rates of the individuz

[W,] term of the autocorrelated dipolar relaxation between thi@es aa, af, Ba, andBB can be written—as stated above—in

two protons. The respective double commutatorsVigrare  the secular approximation as follows for the DQ spectrum,

Further Relaxation Contributions
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DQ _
g =+T+ TRpen+ TRwn + T 0
-0.5 1
+I%ent Feent+ Wy + 17
99 = +T2— [Gon— Do — T8 £
p NH,CH N,NH C.NH =
& s
w ==
+IRent lFecnt Wo+ 17 %ij 2o
DQ _
F/ss =+ - FIC\JH,CH + FIC\J,NH + F%,NH 254
- FIC\J,CH - FE,CH + W, + Fl 3.0 . T T T
<200 -150 -100 -50 0 50 100 150 200
Igg= 4T+ TRpen — Do — Tenn W'l
—TSen—Toey+ W, + T, [10a] FIG. 4. NOE cross-correlation ratE}\,x between the protons Hand

HY.; in a protein as a function of the peptide backbone angle. = 6.4
ns) according to Eq. [12]4 is correlated with the distance between the two

and the ZQ spectrum protons by the relation given in Fig. 11b.

2= 41— T{uen + Tinn — Tan the product of the intensities of the inner lines in the nominat
and the product of the intensities of the outer lines in th
nen T Feen+ Wo + Ty denominator of the logarithm (Fig. 3).

We have calculated the dipole—dipole cross-correlated r

Q + a+ c _ [ + c K ) . . .
Tap P4 T = T+ e laxation rate on the left-hand side of Eq. [11] with simulation:

— T8+ T+ W, + T, with the program WTESTI(1). The basis for these simulations
are Egs. [4] and [5]. To obtain the angular information abot
FE=+T2+ Tipen+ TRnn — Tenn the included projection angle between the bond vectors N—+

and C-H*, Eq. [6], which describes the angular dependence

+TRen = Teent Wo + Ty the dipole—dipole cross-correlation rate, is combined with E

T2 = +T2— e — Do + T [11]
Pe Nrcr N A The contribution to the dipole—dipole cross-correlate
+ IRen— Téon ™ Wo + Iy [10b] relaxation rate due to NOE between the two protons is give

by the difference of the rate&, andW, which are given by

The relaxation rate of a signal is reflected in the linewidth 5}2 13
half height. In the experiment described below, double- and
zero-quantum coherences are evolved goastant timeman- ) )\ s
ner during the timer. The relaxation rate of each multiplet _ i (MO> ( ﬁVH) [12a]
component is directly reflected in the intensity of the signal by o710 \47) \rdcym Te

I, < exp(-=I,T). Correspondingly, the cross-correlated re

laxation rates can be extracted from the multiplet intensities W — 1 (e [ hyd\? 12b
and also the integrals according to 2710\ 47 \re) T 1+ d(wur)?] [120]
1 | PR | P2 1 . . . .
I$%, = =In{ -5 (@p) S (B) — = (W, — W) To get an impression of the size of the effect, Fig. 4 shows tt
' 4T [P9%aa) | Q(BB) 2 . NOE  __ .
cross-correlation raté'icpn = W, W, between the two
1 1 2% aer) 17%(BB) protons H and H,, in a protein as a function of the backbone
IRa%n = a7 In( 12(ap) | ZQ(Ba)) — 5 (W = W) angleyr. The overall correlation time, was assumed to be 6.4
ns.

The four cross-correlated relaxation rat&sg, I'¢ am I'icn
andI'¢ .y can be extracted from Eq. [10] in a similar way as th
dipole—dipole cross-correlated relaxation rdtg@sc, were ob
Note that the reliability can be checked by variation of th&ined. The single dipole(NH)-CSA cross-correlation rates a
constant time delay (10). Note that this implies always taking given by

[11]
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c 1 Tczz
FNNH ﬁ .
DQ DQ ZQ zQ \\ 200 /caH
< | (l (aB) 17%(BB) 1™(ap) | (BB)) _C—==N
: |DQ(0‘01) |DQ(BO‘) |ZQ(0404) IZQ(BQ) HCo+ 933 ‘H
c 1 \
[Ron= 8T o1

5 5 . . FIG. 5. Orientation of the®N CSA tensor in a peptide according to Ref.
| | Q(aB) | Q(BB) | Q(aa) | Q(Ba) (148). o1, and o33 are oriented in the peptide plane, wherg is rotated about
xIn | DQ(aa) | DQ(Ba) I ZQ(aB) | ZQ(BB) ca. 20° relgtive _to the ©! pond.a22 is orignted orthogonal to the peptide plane.

For an amide nitrogenr,, is the most shielded component of the CSA tensors

[13]

. . Constant time versus real time evolutionCross-correlated
and are similar for the dipole(CH)-CSA cross-correlated re- . . .
laxation rate relaxation rates can be extracted most easily fcomstant time

data since the intensities and the integrals directly reflect tl

relaxation rates. Undeaweal time evolution, this is no longer
ISey= true and the relaxation rates have to be deconvoluted from
’ 8T potentially complicated lineshape that is often not known sinc
1°%(BB) 1°%(Ba) 12%(BB) 179 Ba) it includes, e.g., small ang-range coupling'constants. We pr
X In<I U aa) 1%af) R(aa) IZQ(aB)) pose here a deconvolution procedure that is robust against
underlying lineshape. If we consider a multiplet with four line:

. 1 with an arbitrary, however, constant lineshapgo) for all

I'Nen = 8T multiplet components on top of the Lorentzian lineshape ¢
described by Eq. [10], the Fourier transformation including a

% In(l "A(BB) 1°%(Ba) 1) 'ZQ(O‘B))_ apodization functionw(t) will yield the following lineshape

1P%(aa) 1°%UaB) 17ABB) 1*(Ba) F,.(») for the multiplet linel ,:

[14]
Fulw) = L(w) ® FTexp(—T',,t)] ® FTw(t)], [15]
The orientation and size of CSA tensors are well known from
solid-state NMR studies for amided4) and for aliphatic .
R where ) represents convolution.

carbons {5) and can be used for these studies in hlgh—resolu-A . . i .
. . . S s described before, the desired cross-correlated relaxati
tion NMR. A review of investigations of CSA tensors of aIIra can be extracted from
kinds of heteronuclei that have been determined by means o?e
solid-state NMR is given in Refl16).

As average valqes for the_mam_ components of theCSA T e+ 3 (W= Wo) =3 (Taq + Tgs — T — Tpo). [16]
tensor for a peptide, one finds in the literatud®)( o, =
(223 = 7) ppm,oy, = (79 = 8) ppm,os; = (55 *+ 9) ppm, and
thereforeAo = oy — o, = 156 ppm. The orientation of thH&\N  The difference of the rates of the multiplet components, e.c
CSA tensor is indicated in Fig. 5. ThEC CSA tensor for T',; — I, can be obtained by fitting the lineshapg,(w) to
aliphatic carbons shows only small anisotropy values. Oitige lineshapé ,;(w) by convolution of thexa multiplet com
finds the following values fot-threonine 15): ;; = (69.0+  ponent with a Lorentzian with a trial linewidti'(, — T,.)"™.
0.4) ppm,o, = (58.9 = 0.4) ppm, andoy; = (52.6 = 0.3) The best fit for [,z — I'..)™ and similarly s — Tpp)™
ppm. Other amino acids have been investigated in Ré&f. ( yields the desired cross-correlated relaxation rate. An examj
showing that the CSA of thEC, varies quite strongly. There on the application of this technique is shown in Fig18)( The
fore DQ and ZQ spectra should show different rates with line is broader than theg line. Duplication of the doublet,
respect to the scaldd., coupling depending on thé angle. shifting one to the low-field sidel() by J and convoluting the

Cross-correlated relaxation betweeft CSA and™N CSA high-field multiplet with a trial Lorentziah (w, LB) with the
does not affect the extraction procedure provided the rates hnewidth LB yields the three multiplets of Fig. 6H. The inten-
extracted from DQ and ZQ spectra individually. This holdsities of theaa(L) line and theaB(H) line are identical if
because this cross-correlated relaxation affects all the submuB = (I",, — I',p). Figure 6 shows the result of the fitting.
tiplet lines in the same way. The optimalLB is 1.6 Hz.
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LB=0.1 Hz LB= 1.6 Hz LB=3.0 Hz T,

AQB

FIG. 8. Schematic representation of a signal which is split due to a scal
coupling of the size 2J into a doubletT, relaxation leads to an averaging of
signal intensity on thex and thep line and therefore to a downscaling of the
cross-correlated relaxation rafé = [\, — A,|, as derived from Eq. [22].

17l80 . 17I40 I l7I00 17|80 I 17I40 ' 17I00 17|80 ' 17'40 I 17IOO
Hz Hz Hz

FIG. 6. Extraction procedure for the determination of dipole—dipole cross-
correlated relaxation rates from real time data. The two lines under investiga-@. Contributions to the cross-correlated relaxation rate
tion are shifted by the coupling constant that needs to be known. This yiell§,, ., due to spectral density functions of higher ordetn
oo v e meranes o e o o o e conpmed 3 2, oy double commtatorshave been considere so
toOltJhe low-field line of the Iow—fieldgdoublet. When they match trszehe with L%g,?gr frequencyw = O for th?.relaxatlon. of '.[he oper-
difference in the linewidth of the two components is determined. atorso,,;”~. We show here that additional contributions due tt
other spectral density functions either do not exist or contribu
only nonsecular relaxation terms. Except for thg?, A5
terms with the C and N operators being longituding N,Hy

To be able to evaluate properly the effect of cross-correlatgfid V3 C.Hy, there are no further contributions due to incom
relaxation, it is necessary that the involved scalar couplings datible Larmor frequency in the rotating frame. Evaluation c
resolved. However, the resolved couplings also ensure that @i of the four possible permutations of the double commut
relaxation matrix in Eq. [3] is faithfully evaluated taking intotor yields
account only the secular components. Therefore, spectral den-
sity functions of nonzero frequendy(w # 0), protonT; ) [ [
relaxation, and proton—proton NOE that introduce nonsecular(c+N+) = ~Punbeil \“% HN,, [\*‘% HeC, C'NTI
terms in the DQ/ZQ relaxation matrik°**° can be ignored. X e = TS E(HEHECNY). [17]
These terms lead to coherence transfer between the multiplet
components. We show here the influence of these terms which . . .
eventually limits the applicability of the method to molecule IS term Is a n.onsecular term, provujed that the chemic
which are very large by NMR standards where the heter blfts of the two qulved protpns are different. We show fo
nuclear'J couplings are no longer resolved (Fig. 7). this example that this relaxation chgnnel does not have a

effect on the cross-correlated relaxation afg .. The subset

of operators connected in the Liouville—von Neumann differ
ential equation by the double commutator of Eq. [17] is give
in Eq. [18]. The differential equation describes a transitio

Nonsecular Terms in the DQ/ZQ Relaxation Matrix

W,
Lp @ T, (1Y)
™ T
P ‘/1_\

ac PP between the lines of ON" and CN"HyHc,
of o
ﬂ ]\ C*N* \"_ (0 r
> oo, <C+N+H;Hg) - (r i(Qun — QHC))
S~ > N
ST [ contigig) 18]
Wo

FIG. 7. Schematic representation of thex, o8, Ba, and B3 multiplet The I terms in the matrix expression of Eq. [18] are obtaine
components in a doublet of doublets. Undesired transitions due to NQffter evaluation of the double commutator from Eg. [16]. Th

between H and H and T, relaxation of the two M and H protons which . : . + P e
correspond to the off-diagonal elements in Eq. [3]. This leads to a transferrc()?flatlve chemical shift of CON" and C N HyHc Is given by 0

magnetization between the multiplet components as indicated in the figure AAAQ - Qun — Qye, respectively. The eigenvalugas, A, of
to a change in intensities which is considered in the text. the matrix are
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CAQ (AQ)?2 805T AQ) 1oy ik
Ay =1 Ti -2 + T2 = | > (fﬁ) = —F<|A,3>
2r? 1 1
X |:1i<1_w):| B _Fa_ﬁ+|wJ ﬁ '[a
AQ - 1 S #):
1"2

I" denotes the rate matrix. The eigenvalugsand A, of the

It is obvious that forl” < AQ/2 both eigenvalues are purelymatrixf“ are
imaginary. This is fulfilled for ¥ and H' due to their large
difference in chemical shifts. Therefore, as long as this inequal- 1 1\
ity holds, there is no contribution to the linewidths of the ) =~ — —<Tz + ) + \/(in T2+ <) . [21]
doublet of doublets of EN*, but only a contribution to the Lk LE
relative chemical shift originating from double commutators of
higher order. with Ty = 3(T', + I'y) andT', = 3 (T, — T'). After separation

b. Proton T, relaxation. In addition, scalar relaxation of of the real and imaginary parts, one obtains for the ro
the second kind 19, 20 due to longitudinal eigenrelaxa-expression, which is\q — A,)/2,

\

— H 2 1 2_ 1 4 2 1 2 1 2 ’ 1 2 2
(/\1— )\2)/2 = (I’ITJ - FA) + (T1> = ;E (7TJ) - 2(7TJ) (Ti— FA> + (Ti‘f' FA> + <Ti+ FA - (WJ) )
i 4 2 1 2 1 2 ? 1 2 2 _1 c i a,B
_ﬁ (7TJ) —2(1TJ) (T;ZL_FA)_l—(T:ZL_l—FA) _<Ti+FA_(7TJ)>_2F —EAQ .

' [22]

tion (p;- and p;-element of the Redfield matrix) throughThe real part contains the effective relaxation rate of tirend

the interaction of the two involved protorisand j with B, the imaginary part the influence on the relative line positior
other nuclei _contributes nonsecular elements to the relakhe effects are illustrated in Fig. 9 for an assumed cros
ation matrixI'°° of Eq. [3] in addition to the equal secularcorrelated relaxation rate of 20 Hz (a, c¢) and 5 Hz (b). Th
contributions for all lines.T, relaxation equilibrates the Splitting of the two lines is due to the NH coupling which wa:s
intensities of thea-line and B-multiplet line of a given assumed to be 90 Hz. Figure 8 shows that the cross-correla
doublet which can lead to an underestimation of the angulf/axation rate is influenced by, relaxation only for rates

- i 1 s ic i
dependent cross-correlation rate (Fig. 8). This shall be df3 = 1/T1 in the order ofm Jyy. This is independent of the
cussed in this section. assumed cross-correlation rate of 20 or 5 Hz, respectively |

To evaluate the contribution due b, relaxation, it is b). As the rateR, = 1/T, increases, the difference of the

sufficient to consider here a resonance line which is splitdue%emlcal shifts of the two signals of the doublet become

L . . “smaller. Expansion of the root expression in Eq. [22] accordir
a scalar coupling in @- and aB-multiplet component. Their . .
. . : . to Taylor yields the eigenvalues
respective relaxation rates shall be, I'; and their relative
chemical shifts=xJ. The ratesl’, and I'; contain all the 1 1
secular contributions. Furthermore, intensity is transferred A=-T,— T +i(md)2— =
from thea-line to theB-line by means oT, relaxation leading 1 T3

to exchange of coherence between theand B-line with the 1 , 1
rate 17T,. The system can therefore be described as Ap=—Tp— T, (md)* — T2 [23]
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FIG. 9. Cross-correlated relaxation rafé of a doublet resonance line (a, b) and the relative chemical shift of one signal of the doublet (c) as a fun
of the protonT, time. The simulation is based on a cross-correlation rate of 20 Hz (a, c) and 5 Hz (b), respectively. The two resonance lines of the si
split due to a scalar coupling of 90 Hz. The difference of real and imaginary part of the eigenvaluea ) as obtained from Eq. [22] is shown. The real part
corresponds to the cross-correlated relaxation rate, the imaginary part to the difference of chemical shiit ahth@-component of the resonance line. The
effects of dipole—dipole cross correlation are averaged out by thelaxation when the rate T/ is in the order of the scalar coupling. In this case, however
the doublet is not resolved any more due to the decrease ahd B-frequency differenc\Q** with increasing rate 17, (c).

Therefore, the dipole—dipole cross-correlated relaxation ratetiige displacements of théH and N resonance frequencies in

independent ofl', relaxation, as long agJ > 1/T,. 1:1 mixtures of DO and HO (24). It turns out that the
solvent-induced chemical shift is a function of the backbon
EXPERIMENTAL IMPLEMENTATION geometry aroundy. Recently, Yanget al. also suggested
) measuring the backbone anglein a protein based on cross-
Introduction correlated relaxation between the'+C* dipolar and the C

The backbone anglé in proteins (Fig. 10) is relatively chemical shift anisotropy interaction mechanis)(
difficult to access by means of conventional NMR spectro- The measurement of the parameter of cross-correlated
scopic parameters. Either the scaldH},,, C¢) coupling @1) laxation rate of double- and zero-quantum coherences invol
or the scalarfJ(N,.,, N,) coupling 2), as well as distance ing the two dipolar vectors GHy and N..;—Hy., allows a
measurements between the protong &hd H., (23) (Fig. quite accurate determination of the backbone angl&his is
11b), turn out to be too inaccurate to define the angle propershown in the following.
A different approach consists of the measurement of the rela-Correlation of6 and 5, as shown in Fig. 11, reveals that
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DQ and ZQ coherences are excited for a constant im&€he
delay 7’ is optimized with respect to the“C” coupling.

Protons are not decoupled during Application of the
pictographical analysis from the preceding section tells us th
all cross-correlated relaxation rates, dipole/dipole as well
dipole/CSA, evolve during”. The experiment is symmetric
aroundt,. In the backtransfer step to the detected protgn H
a COS-CT (coherence order selective coherence transfer) e
ment is employed for optimal sensitivity.

For the design of pulse sequences that measure cross-co

FIG. 10. Schematic representation of the peptide backbone with backbdizted relaxation rates, pulse sequence elements affect the €
T e seomam e s a6gn b s i, o under relation n @ certain preditable way. This |
D e kbor angle (Sgee text)?”The lans which 15 spanned by the atomess, | Uite: different from autocorrelated relaxation where pulse s
and N.., is highlighted graphically. quence elements normally do not affect relaxation. This shc
section introduces some rules of calculation for how an effe
tive Liouvillian can be calculated in a pulse sequence. A
though several papers have been published on average Liou

regions of different secondary structure elementsy-aglices lian theory @7), these simple rules have not been demonstrat
and B-sheets, can be differentiated. The 3%0bs 1 depen SO far. . .
dence of the cross-correlated relaxation is also not degeneratBulses of 180° allow us to manipulate the evolution ¢
for the two secondary structure elements. The solid lidfgeteronuclear cross-correlated relaxation in a similar way
cos@) = 0.163+ 0.819+* cosfy — 119°) can be obtained by they allow us to manipulate the evolution of couplings an
means of geometrical considerations. Here bond lengths Gémical shifts in heteronuclear spin systems. A train
NHY = 1.03 A, C'H* = 1.09 A, NC* = 1.47 A, NC = 1.33 180°(H) is used, e.g., it°N relaxation measurements, to get
A, and CC* = 1.52 A, as well as tetrahedral symmetry and théd of the dipole—-CSA cross-correlated relaxation ra8).(

p|anarity of the peptide backbone, have been assumed. The time evolution of the density matrix under the Hamiltor
operator and the relaxation superoperator is given by

Description of the Pulse Sequence and Experimental Results ~ A

o' =i[H, ] —T'(0— 9. [24]
The pulse sequence which is shown in Fig. 12 is essentially

a HNCOCA-like experiment26). A correlation between the  |gnoring the inhomogenous part and assuming weak co

two pairs of atoms G-Hy and N.,;—H., is achieved by pling and the secular approximation for the relaxation supe
excitation of double- and zero-quantum coherences during

Starting from the proton M,, magnetization is transferred to
the nitrogen N,,. After a further INEPT transfer over C
magnetization is finally located on the carboij. 0hrough

operator we can treat the evolution urltféndependently for
each eigencoherence of the Hamiltontdn

»

application of two simultaneous 90° pulses 6N and *°C*, o =-T6. [25]
a cos(8)= 0.163+0.819%cos(y-119 ) b duNHe=19.335 - 4.207 cos(y-119)] 12
38
|
34
B—sheet d "
/| (Al
2.6
o—helix 4

0 ; 1 2.2

100 0 100 o B

vl vl]

FIG. 11. (a) Correlation of the anglesandys in the protein backbone from Fig. 10. Values of pairg@nd s found for the protein rhodniin are depicted
as diamonds (b) Distance between thg Hand the H proton as a function of the backbone anglén a protein.
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FIG. 12. HNCOCA-like pulse sequence for the measurement of N-&t—-H* projection angles. DQ and ZQ coherences evolve chemical shift durir
t;. Delays are as followsA = 5 ms,r = 35ms, 2’ = 9 ms,7 = 26 ms,e = 1.2 ms. G3 and G4 Gaussian cascad®y have been used as selective
90° and 180° pulses on“@Gnd C resonances. If not otherwise indicated, RF pulses have phase= x, —X; ¢, = 2(x), 2(—X); b3 = 4(X), 4(—Xx);
ds = 8(X), 8(—X); e = b1 + P, + ¢ + ¢Ps. Quadrature irt, is achieved by variation of phaseés and ¢, in States—TPPI manner. Echo—antiecho
coherences are selected duringy inversion of phaseg; = —y together with the sign of the second gradieB®)( The phaseg; and ¢s are shifted
by 90° in subsequent FIDS and stored separately to be able to differentiate DQ and ZQ coherences, datipgatic and carbonyl resonances are
decoupled during acquisition using MLEV-expanded CHIRP pul88}. (Pictorial representation of the CSA and the dipolar coupling evolution. Al
interactions considered are inverted &t ¢ t,)/2. Since the cross-correlated relaxation behaves like the product of the interaction that is cross corre
Cennms Tunes Tnvens Teon @nd ey evolve duringr”.

Incorporation of amr-pulse in the pulse sequence leads to the this case, ther-pulse in the middle of two equal delays lead:s
equation of motion to refocusing of the effect of the relaxation mechanism. Sinc
relaxation superoperators are derived from double commu

2. N tors, we present some simple rules to easily see the effect c

(PG)" = —I'(P5). [26]  _pulse on a given relaxation rate. We assume we have t

) operatorsA, B, whose cross correlation is a source of relax
m-Pulses have the property that for many relaxation mechgion. The relaxation superoperator is then given by
nisms either the commutator or the anticommutator vanishes.

_Pr=0 or [I,Pl.=TP+Pl=0. [ =[A [B,]] +[A", [B"]].

o»
=1
o»

(I, P] =

[27] .
A m-pulse on any cohereneecan be written as

In the first case, evolution of coherence under a certain relax-
ation is not affected by ther-pulse:

o»
=}
Il
o
<P
o
_Af-

o»
o»
=»

&' = (P&)" = —TP& = —P I'. [28]

d: wherelg is the superoperator effectingrarotation andP is the
" corresponding operator.

R The two operator$\ andB shall be affected by the-pulse

I'e. [29] in the following way:

In the second case, the sign of the evolution is change

P& = (P5) = —I'Po = +

o»



MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS 57

TABLE 1
Tensor Operators in the Rotating Frame and Modified Spherical Harmonics for the Dipolar and CSA Interaction

Tensor operators for the

dipolar interaction Tensor operators for the CSA

interaction
b, = — Y
K Bo gy 3 be = 3 (o — o)vBo
Modified spherical harmonics Frequency
q AP 1) AR(1) FO(0, ), Fi& (0, ¢) g
2 NInG |3 sin’0 expl + 2i) w(h) + o(l)
-1 A V6 sin 6 cos 6 exp(+id) o(l)
8 Ik,zl |
-1 377 [y~ V6 sin 6 cos 6 exp(+id) w(ly)
V& 'kilz / k
0 ‘Ikk,z‘l‘l‘z 3C0§0_l R 0 R
0 107 + 1D 3cogh — 1 o(l) — o)
+1 i+ By V6 sin 6 cos 6 exp(—id) )
V8 tkllz Ve lk
+1 By g+ — V6 sin 6 cos 6 exp(—id) o(l)
AERLE
+2 \éfk*iﬁ - \ésinze exp(—2i¢) o(l) + o)

Note. The calibration has been chosen such tfigtF@(6, ¢) FC?(0, $)d(cosd)dp = £, independent of).

change forA or for B. Then the weighted sum over the times
is formed with the weights being,sg for each time segment
(Fig. 12).
[30] In the autocorrelated cass = s, and therefores,s; = 1.

Therefore, autocorrelated relaxation is not affected by tf
with s, ss = = 1. These equations are true for all operators @fpplication of arr-pulse and cannot be inverted by it. There i:
Table 1 except for the case discussed below. Then it followly one exception to this rule for the operators of Table
that which is discussed in the appendixes. For the cross-correla
case, we consider here two examples.

P& = s,sPL6- [31] (a) Dipole—dipole cross-correlated relaxation.

Thus, ifs,sg = 1 we have[f, I5] = 0 andifs,sg = —1 we

have[f, IAD]+ = 0. An example to illustrate the commutator
relations is described in Appendix 3.

Thus, it is sufficient to know whether the-pulse invertsA
(sa = —1) or not 6, = 1). The same holds fdB. We can Application of am(**N)-pulse or am(**C)-pulse leads te,ss =
pictorially represent the inversion of an interaction as depictedl and therefore refocusing of the cross-correlated relaxatic
in Fig. 12 by drawing horizontal lines, the upper representiny m(‘H)-pulse, however, does not affect the relaxation sinc
positive evolution of the operatofsor B and the lower if ithas s,s; = +1. This is used in the sequence of Fig. 12 where th
been inverted. For a given cross-correlated relaxation rate, thg°N)-pulse andr(**C)-pulse leave the HN, CH dipolar cross-
sequence is segmented in the periods in which there is no sogmrelated relaxation invariant.

[’ = [HYN,,[HSC, 1] [32]
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(b) CSA—dipole cross-correlated relaxation.

=i»
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Application of am(**N)-pulse or ar(**C)-pulse leads t8,S; =

+1,

PN =NfT=N*,
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whereas am(‘*H)-pulse leads to refocusing of the interaction

(saSs = —1).

The pictorial representation used in Fig. 12 depicts t

FIG. 14. Graphical representation of the extracted dipole(NH)

ﬁj'énole(CH)‘ cross-correlated relaxation rates as a function of the backbor

angleys, as found from structure calculations before refinement. The solid lir

evqlution of each of the H_amiltonians of interest during th€orresponds to Eq. [16Fuen + £ (W, — Wo) as obtained with WTEST for
period1”. All operators are inverted after( + t,)/2 leading a correlation timer, = 6.0 ns.
to the full evolution of all cross-correlated relaxation rates that

originate from any of the magnetic interactions.

The DQ/ZQ HNCOCA experiment has been applied to the
protein rhodniin which is a thrombin inhibitor. The proteinsonsists of 103 amino acids and folds into two domains whic

K96

S90

L40

800

2400

1600

2400

Hz

1600

are connected via a flexible linker. Each domain contains
triple-stranded3-sheet and a-helical region. Experimentally
obtained spectra are shown in Fig. 13. The doublet of doubl
lines is not completely symmetric with respect to the resonan:
frequency. This is due to a differed—CSA contribution
which can be observed on the multiplet lines correlated wil
the *J,x coupling (X = C* or N, respectively).

The cross-correlated relaxation ratég ., can be extracted
from the intensities of the lines«a, afB, Ba, and BB with the
procedure described above.

Cross-Correlated Relaxation Rates as a Tool for Structure
Refinement in Restrained MD Simulations

a. Dipole(*N-"H")-Dipole(°*C*~'H"). The extracted cross-
correlated relaxation rates are used as restraints in the X-PL(
protocol to refine the backbone angleThe starting structures for
theI'-refinement have been generated using the simulated ann
ing protocol developed by Bnger for X-PLOR R9). It consists
of a 32.5-ps high-temperature phase at 2000 K, a first 25-
cooling phase to 1000 K, and a second 10-ps cooling phase t
final temperature of 100 K. A total of 1645 unambiguous and €
ambiguous NOE restraints have been taken into account as wel
22 dihedral restraints for thé- and 28 dihedral restraints for the
x:-angles. In addition, 34 hydrogen bonds have been identified
slow proton exchange of which 16 hydrogen bonds are impl
mented as ambiguous. The 30 structures with the lowest to
energy out of 200 structures are chosen for further refinement. T

FIG. 13. 1D strips from the 3D DQ/ZQ HNCOCA for the residues kosaveragej-angles for the unrefined structures are shown in Fig. 1

S90, and L40 in rhodniin corresponding to backbone angles.

together withl'§, oy @s a function ofs.
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FIG. 15. Circle diagrams of the- andi-angles of all 30 structures before refinement. Shaded in light gray are all angles which will be restrdiliggd.by
relaxation rates; shaded in darker gray are all angles which will be additionally restrained by dipole—CSA relaxation rates in a second oalicciatien.
diagrams in this paper have been prepared with the program MOLN@L (
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Dipole(NH)—dipole(CH) cross-correlation rates tend to ager all 30 structures. The dashed line indicates 0O for the angul
sume positive values fop-sheet regions, whereas they argalue; the values increase clockwise. Shaded in light gray &
around zero for-helices. Coils and turns show negative rateangles restrained by dipole—dipole relaxation rates; shaded
The theoretical angle-dependent cross-correlation rate is dragarker gray are angles which will be additionally restrained b
with a solid line in Fig. 14. The curve was simulated with thdipole—CSA relaxation rates in a further calculation.
program WTEST 11) assuming an overall correlation time of The refinement is performed by a 100-ps restrained MD wit
the molecule ofr, = 6.0 ns. This value is consistent wittN  all restraints included which have already been used in tl
relaxation measurement8Q) that yield a value of 6.4 ns for simulated annealing plus 30 dipole—dipole cross-correlats
the second domain and a value of 5.4 ns for the first domainriglaxation rates. Since the dependence of the relaxation rate
rhodniin. In Fig. 15 thed- and y-angles of all 30 unrefined the -angle can be approximated by a Karplus-like function c
structures are depicted in circle diagrams as obtained frahe formI'§(y) = 25.536 coqy — 119°) + 10.332 cosf —
MOLMOL. The count for the structures is encoded in th&19°) — 12.309 forr. = 6 ns, the additional energy term is
radius. Thus a straight line from the center of the circle to theecounted for by making use of the parabolic potential fc
diameter like forys,4 indicates that the same value is obtainedoupling constant refinement already implemented i



60 REIF ET AL.

151 Shaded in light gray are all restrained angles; shaded in darl
gray are the four angles with two different values.

Due to the refinement, the rms difference for the NOI
restraints rises from 4.4% 107% to 5.06 X 10 A. The
average rmsd value to the mean structure for the backbc
atoms rises from 0.39 A to 0.46 A for the core region of th
first domain (amino acids 14 to 48) and from 0.34 to 0.43 A fc
the core region of the second domain (amino acids 66 to 10.

b. CSAPN)-Dipole(*C*—'H*). Similar to a Karplus rela
tion, the 3 co® — 1 function of the cross-correlated relaxatior
rate can also assume differafstvalues for one single cross-
A g7 2 160 >0 correlation rate. The main axis of th®N CSA tensor does not

v [°] lie parallel to the N—H bond. Therefore, the cross-correlate
relaxation ratd'y ., between the (G-H®), vector and the | ;

FIG. 16. Graphical representation of the extracted dipole(NH) . g c
dipole(CH), cross-correlated relaxation rates as a function of the backbo%:eSA tensor has a differeqt-dependence thaliy.c, and can

angle i as found from structure calculations after refinement Vi . help to resolve thei/-ambiguities (Fig. 18).
dipole—dipole relaxation rates. Figure 19 shows the dipole(@®) —CSA(N),,,; cross-cor

related relaxation ratEy, ¢, as a function of the backbone angle
P as found in structures calculated with X-PLOR before th
refinement procedure.

) ) The dependence of the CSA-dipole relaxation rate can
X-PLOR. During the run, the force constant for theestraints jieq in the same way as that of the dipole—dipole relaxatic
is increased exponentially with time. Several calculations hayge py a Karplus-like function. Here, one find§ c.(1) =
been carried out using different final force constants. The for¢g 042 cogy — 119°) + 7.971 cosf — 119°) — 7.506 for
constants for thd'-restraints were optimized such that the. — g ns. As the maximum value of the CSA—dipole relax

standard deviation of the calculated relaxation rates reflegigon rate is approximately half as large as the maximum val
their approximate experimental error. Thus, 1.25 kcal ™olof the dipole-dipole relaxation rate, the force constant of tr
Hz™* turned out to be a reasonable value for the final forggrmer is chosen four times as large as the force constant of
constant. Variation of th€ error (Wh|Ch is defined in the Sameatter to achieve a rough|y equa| We|ght of both classes
way as theJ-error in the X-PLOR help function (29)) betweenyestraints. If one uses all 33 measured CSA—dipole relaxati
0 and 5 Hz did not have any effect on the results either for thgtes, some of them come into conflict with the dipole—dipol
regions with secondary structure or the loops except for a low@faxation rates. This could be due to the fact that one measu
energy, the larger the error was. the average relaxation rate of different conformations. Tho:
Figure 16 shows the experimental cross-correlation rategn only be treated correctly by a refinement with ensemb
I'Sn.cv together with the respective averagieangles after this averaged cross-correlated restraints which will be left to furth
refinement procedure. work. For the present calculations, all conflictifgrestraints
The rms difference for the relaxation rates to the experimefere excluded so that one is left with 30 dipole—dipole and 1
tal value decreases from 7.87 Hz for the starting structures@$A—dipole restraints. As in the calculations with dipole-
0.97 Hz for the final structures. The average energy of tiagpole restraints only, the-angles of residues T22, C27, and
I'-restraints drops from 2167.2 to 11.4 kcal/mol; the tot&#91 converge to two different valuegyf = +77.1°, 5, =
energy rises from 663.9 kcal/mol for the protein withbute- +160.2°; 3, = —69.6°, 3, = —50.8°; 5, = +74.4°, 5, =
straints to 833.9 kcal/mol for the restrained protein. For one161.1°). The relation of populated conformations f;
restraint there are four and for another restraint there are thiggfts from 22:8 fon);, = +49.2°,y%; = —20.9° to 27:3 fon)3,
violations larger than 3 Hz in 30 structures. There are ne +47.9°, y%, = —30.0°. Hence, this is a case where the
violations larger than 5 Hz in any of the structures. The averagipole—CSA restraints resolve an ambiguity found with dipole
standard deviation to the mean calculated relaxation ratipole restraints alone. The values of the angles remain nea
amounts to 0.42 Hz. Most of thgg-angles converge to a singleunchanged compared to the calculations without dipole—CS
value except those of the residues T22, C27, D73, and P#dstraints. The dipole—dipole relaxation rates after the refin
which converge to two different valueg® = +77.0°,5, = ment are shown in Fig. 20; the dipole—CSA relaxation rates a
+159.9% L, = —68.5°, Y2, = —51.1°% %, = +49.2°.y% = shown in Fig. 21.
—20.9% 5, = +78.7°, 5, = +159.0°). To illustrate this  The circle diagrams in Fig. 22 illustrate the changed beha
effect, we have chosen the circle representation in Fig. 1i@r for angle .

I_\:.\'H_ (i, | [HZ]




MEASUREMENT OF ANGLES BETWEEN TENSORIAL INTERACTIONS 61

€
O
©

"

&
)
@

@,
S,
©,
(-
)
®
C

DD

2
€
(D
%
(
@
>

@,
O
€,
©
(5
(o

)
©,
(D
D
(3

B

)
©
@
©
©

(9
@,
(©,
O
(3

o0

)
S

3
o

)
(O
D

Wes

65

(P
(5

o
%
d

(0

()
©,
(3
©,
&

()
)
C
€
@,
(D

(o
@,
(2
)
©

FIG. 17. Circle diagrams of thep- and y-angles of all 30 structures after refinement with dipole—dipole relaxation rates. Shaded with light gray ar
restrained angles; shaded with darker gray are the four angles which assume two values after refinement.

Due to the refinement, the rms difference of thae- rates restrains the angles to a region smaller than the tol
straints drops to 1.24 Hz with a standard deviation of 0.4hce typically used for dihedral restraints ©f80°, so the
Hz for the dipole—dipole and of 0.16 Hz for the dipole—CSAntire structure is slightly more strained than without relax
restraints. There are no violations of therestraints larger ation rate restraints. The rms difference for the NOE re
than 5 Hz; two restraints are violated in 1 of 30 structurestraints rises to 5.1% 10 2 A. The average rmsd values to
and one restraint is violated in 2 of 30 structures. During tlthe mean structure for the backbone atoms rise from 0.39
refinement procedure, the total energy of thaestraints 0.46 A for the core region of the first domain and from 0.3
decreases from 3113.7 to 140.4 kcal/mol. Nevertheless, toe0.42 A for the core region of the second domain. Al
total energy rises compared to the unrefined protein frothhough the local rmsd has small maxima around amino aci
663.9 to 979.2 kcal/mol. In part, the increase of the totalith double J-angles, the rmsd is also increased for th
energy is due to the fact that the limitation of the relaxatioother regions of the protein. The overall structure of th
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FIG. 20. Graphical representation of the extracted dipole(NH)
T T T I T

T T dipole(CH), cross-correlated relaxation rates as a function of the backbol

0 100 angley, as found after refinement with dipole—dipole and dipole—CSA relax

W[o] ation rates. The dotted diamond gives the position of the only sparse
populated second conformation.

-100

FIG. 18. 6'[(C“H%)y, CSA(N).,] as a function of the backbone angte.

The orientation of the CSA tensor is taken from solid-state NMR spectra (Ref.

14). Values are taken from Hartzedit al. (14b) (solid line) giving 6’ =

arccos[0.263+ 0.556*cos (f — 119)] and Lumsdeeet al. (148 (dashed line) between the®N CSA tensor and the N-Hvector as well as

giving 6’ = arccos[0.263+ 0.556*cos(y — 119)]. . c 30
the cross correlation rateg ., between theé’C* CSA tensor
and the CH® vector can also be obtained. However, thes
rates can be measured more reliably by mean$fand

protein does not change very much and its secondalrsga relaxation measurements and therefore are not give
structure is nearly unaffected by the refinement. The rmsd &¢"€:
the backbone atoms of the mean refined structure to the
mean unrefined structure is 0.18 A for the core region of the CONCLUSION
first domain and 0.31 A for the core region of the second
domain.

In principle, the cross-correlated relaxation rdi@

We have shown that cross-correlated relaxation rate
either between two dipolar or one dipolar and one CS,

a-Helix

1 " 1 . Il " ]

) " . ; : i -200 -100 0 100 200
-200 -100 0 100 200 v [°]

FIG. 21. Graphical representation of the extracted dipofé{Q,—
FIG. 19. Graphical representation of the extracted dipofé{Q.—~ CSA(N).., cross-correlated relaxation rates as a function of the backbol
CSA(N),., cross-correlated relaxation ral& .y as a function of the mean angleys, as found after refinement with dipole—dipole and dipole—CSA relax
backbone anglé, of the unrefined structures. ation rates. The dotted diamond has the same meaning as in Fig. 20.
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FIG. 22. Circle diagrams of the- andi-angles of all 30 structures after refinement with dipole—dipole and dipole—CSA relaxation rates. Shaded with
gray are all restrained angles; shaded with darker gray are the three angles which assume two values after refinement and shaded with/davhgray is
is restrained to a single value by additionally taking into account dipole—CSA relaxation rates.

interaction, can be used for the determination of the struiein complexes, we expect this parameter to become a use
ture of a molecule by means of NMR. These new structurtdol in the future.

restraints are independent of any Karplus-type calibration

and therefore are especially valuable for the conformational APPENDIX 1

analysis of molecules where such a calibration is difficult to

obtain. Furthermore, the effect of cross-correlated relax-  Hamilton Operators for the Dipole-Dipole and

ation is not restrained to the analysis of local geometry, but the Chemical Shift Anisotropy Interaction

can be used for the determination of the relative orientatign . . .

A.1.1. Dipole-Dipole Interaction

between arbitrary directors within one molecule or between
two molecules, if a correlation between these two can beThe Hamiltonian describing the dipolar interaction betwee
established. Especially for, e.g., deuterated proteins or pteso spins can be written in the forni2, 13, 19, 3p
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~ DD 1 . . o and therefore the spectral density functions
Hg = ka{S TEI (hera) (hrg) — Ikll}
(@) = & Te
A N CTAL

+2
= by E F&?)(Oklx Cbkl)A;((I])(i\kv T|), [A1]
o are independent af.

) For Eg. [A.2b], we assumed an axially symmetric tenso
with However, this is no restriction of generality since each asyn
metric CSA tensor can be decomposed into a superposition

Yy two axially symmetric tensors: The bilinear form of the CSA

by = — ko Aard” contribution to the Hamilton operator in the PAS from Eq

[A.2] can be—after diagonalization of the CSA tensor—rewrit

Thereby,y, and+y, denote the gyromagnetic ratio of the nuclefen @s 89
k andl, # the Planck constant, andthe distance between the

two nuclei. The angle$,,, ¢, refer to the orientation of the £y CSAPAS _ y Ot Oy + 0, B + } N
vectorr,, with respect to the applied field. The exact expres “ 3 kg T T
sions for the second-rank tensor operathf®(i,, 1,) and the 1
time-dependent modified spherical harmor#®(0,, ¢.,) are X [20,,Bx — T,,By — 1,..B,] + 3 oy = 02)
given in Table 1.

The second main relaxation mechanism is relaxation X [Zik,yBy — ik,xBx — Tk,sz]- [A.3]

through chemical shift anisotropy. The contribution to the

Hamiltonian due to CSA in the principal axis frame (PASyhe first term in Eq. [A.3] describes the isotropic part of th
of nucleusk and in the laboratory frame (LF) can be writtenzhemical shift, the second and third terms, the axially symme

as (12, 13,19, 3 ric anisotropic contributions. Equation [A.3] can be used fo
the description of cross correlation between arbitrarily anis

HESAPAS= o > B.akik [A.2a] tropic tensors since an asymmet_rlc amsotropu; tensor of ram

i=xy.2 can be contracted from two axially symmetric tensors lyin

along orthogonal axes. Using Tableo},— o, would beo,, —

! o ,, With x as axis of reference due to the second term,@nd

HEAM = b X FiP(6, dAP(Y,  [A2b] & would bea,, — o,, with y as axis of reference due to the
a=-1 third term in Eq. [A.3]. For the special case of a symmetri
CSA tensor §¢,, = o,, = o), one finds
with
H ESA’PAS: yk[0|\ik,sz + 0-L(,I\k,xBx + Tk,yBy)]
-1 _
by 3(0'” o) vBo B o-H—f—Za-L N o~ 0,
= Yk 3 Bl k + 3

for axially symmetric CSA tensors. TH& denote the compo

nents of the applied fielB, in the PAS. In the LF, in analogy

to Eq. [A.1], the CSA Hamiltonian can be separated into the
time-dependent, orientational functiofs”(6,, ¢.) and the
time-independent spin operator ter@(i,) (12, 13, 35. The it o
expressions for the second-rank tensor operaidti,) and ”
the time-dependent modified spherical harmom( 6., ¢.) APPENDIX 2

are again summarized in Table 1. The angleand¢, are the

polar coordinates of the main axis of the axially symmetrigelaxation Superoperator and Spectral Density Functions

tensors in the laboratory frame. ) . .
The convention we use f&®(1,) andF{®(6,, ¢,) ensures  The relaxation superoperator in the Liouville-von Neuman

that the integral equation,

X (20,,B, — 1B — 1,,B)) } [A.4]

— 0, = 03z — %(O-xx + O-yy)'

ﬂ_ ifﬁ F(q)(e )F(fq)(g )d( G)d g o= _i[l:lo: 6’('[)] - E 1avw(a'(t) - 6(0)), [A-5]
- At ’ d) ’ d) Ccos d) dt !

5 VW
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has the general form

Tywé = byby > [AL Y, [AR, 611 * jiulwy), [A6]
q

where the indice¥ andW refer to the interactions that are the
source for relaxation. The terfi§(w,) denotes the spectral
density function and is obtained by evaluating the correlation
function of the spherical harmonics,

Jiwlwg) = J”’ drF@(t) F{ 9t + T)exp—iwgr). [A.7]

0

The bar indicates time average overln the autocorrelation
case { = W), both interaction® andW are originating from

the same source of interaction, e.g., the same pair of nuclei.
In the cross-correlation case, the time-dependent spherical
harmonics refer to different kinds of tensorial interactions
(V # W).

The cross-correlation case only shall be considered in the
following. The theory for the description of intramolecular
dipolar interaction in coupled multispin systems has been de-
veloped some time ag@§—40Q. Formulae have been derived
for the three cases of isotropic, axially symmetric, and gener-
ally anisotropic reorientation which are given in the following.
A review on this topic is found in Ref4().

A.2.1. Spherical Top Molecules

The spectral density function for isotropic rotational diffu-
sion has been derived by Hubbard and Kuhlmann and Balde-
schweiler 86a, 37,

id _E 3 529 1 L
lvw(wq)—S( COsSOyw — )(GD)2+w§

_ 1 2 271,
= g (3 CcO BV,W - 1)|:1+(wq7_0)2:| [A8]

D denotes the diffusion constant, withrl/= 6D. V andW
denote the different interaction8,,, describes the projection
angle between the principal axes of the two interactidrad
W. If V denotes, e.g., a N-H af a C—H dipolar interaction,
respectively, as indicated in Fig. B, is the included angle
between the two bond vectors N-H and C—H.

A.2.2. Asymmetric Top Molecules

The spectral density function for the asymmetric top as-
sumes the form36c, 38, 40

1
Jiwlwg) = 10* {12 cos#,cos 6,sin 6,sin Hy,sin by sin by

b,

X b2 1 o2 + 12 cos6,cos 0,sin 6ysin 6,
1 q

b, :
X COS ¢C0S d)wm +3 S|n29\,
2 q

. . . b
X SiN%0ysin 2¢\sin 2y béTswﬁ
&\ o 20 <in2
+ | 3 cog > sin“6,Sin“6,,CoS 2p,,COS 2b\y
s
+sin?| 5 (3 cog6, — 1)(3 cogHy, — 1)
& (¢
[ > >
+ 3 coa( 2) sm( 2)

X ((3 coghy — 1)Sin*6,,c0S by,

b
+ (3 cog6,, — 1)sin®6,cos 2p,) W“(DS
+ [3 sinz(g) Sin6,sin?6,,cos 2h,COS by
+ cosz<g) (3 cog6, — 1)(3 cogHy, — 1)
-3 cos<g> sin(é)((S cos6, — 1)
X SiN%0,,COS 2pyy

bs
—_— 1 2 T 2 . 9
+ (3 co6,, — 1)sin®6,cos 2b,) b2+ wﬁ}’

[A.9]

where the notation of Woessnetlj has been used:

D= % (Dxx+ Dyy+ Dzz)

L?= :l’, (Dxnyy + DxxDzz+ Dnyzz)

D,— D
tan = 5[ S— }
=N 2D,,— Dy — Dy,

b, = 4Dy, + Dy, + D,
b, = D, + 4Dy, + D,,

b; = D, + Dy, + 4D,,

65
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b,=6D + 6,D?— L? [A.14] can be directly used to compare field-dependent expe
vD ; ) . ;
imental relaxation rates with predicted rates and for the an:
bs=6D — 6,D2— L2 [A.10] Ysis of molecular dynamics trajectories or for the analysis
_ models.
A.2.3. Axially Symmetric Top Molecules Application of the Lipari and Szabo approach assumes

For the case thab,, = D,, = D, Eq. [A.9] can be addition an exponential decay of the correlation function wit

simplified yielding the spectral density function of the symthe characteristic rate from time O to the timer according to
metric top rotator D,, = D) (36b, 43.

P2 \% P2 W
jowl@y) = % {(3 cos, — 1)(3 cosh,, — 1) IKY [c0s6y(1)IPo[cos Bt + 7)]

. . T
+ 12 cos6,cos 6,sin 6,sin 6, = eXF( — 1'.) {PZ[COS Ov(t)]Pz[COS Qw(t)]
X cogdy — dw) IV
+ 3 sinhysin?6,cod2¢y — 2dy) I3

— P,[cos0y(t)]P,[cos Oy (t + )]}

+ P,[cos0(t)]P,[cos Oy (t + «)]
[A.11]

foud - )ra - o1+ con)
where the reduced spectral density functions2(= m = i
+2), X P,[cos 0y(t) ]P,[cos O(t)], [A.15]

2T¢m

Jom = 15 (wr)? [A.12] where S¥w)? is the order parameter for the respective intera
WqTem

tion andr; corresponds to the internal correlation tirdd (45.

have been used. The correlation timegg can be rewritten as
diffusion constant®; andD , according to APPENDIX 3

Urem=6D, + m (D” D,). [A.13]  Transformation Properties of Relaxation Superoperators
under ar-pulses

A.24. Inclusion of Internal Motion The transformation of the relaxation operators unde

Internal motion can be incorporated into the spectral densitypulses is described in Eq. [31]. There is, however, or
either by the Lipari and Szabal®) approach or by explicit exception to this rule for the operators of Table 1. A selectiv
calculation of the motion from, e.g., motional models of mo#-pulse on spir, app“ed toAGP(Ty, 1)) = VA1 leads to

lecular dynamics trajectories. In Eq. [A.7], the spectral dens;lrk V23TEE = VEI1E. Conversely, pkx\/ i0r = V2

ties are Fourier transformations of the motion of the molecui§|I Thus these operators are not transformed into themsel

with respect to the external magnetic field. This equatiof} their hermitian conjugate. For example, we find for a rela
assumed that internal motion is absent. Rewriting the spectsgbn superoperator,

densities as a convolutiork{ of a Fourier transformation of
the global motion and the Fourier transformation of the local -
motion, we find for the first ternjyw(w,) in Eq. [A.11] for fﬁ)kxA = Db QO[= L (0T + 1,40,
axially symmetric diffusion: ’
1 T P s
jﬂ,\'ﬁcalmc’“or‘(w) Z%FT [ 4(Ik|n + Ikln)a Pk,xo-]]
q

X {P;[cos Oy (t)]P,[cosOw(t + 7)] X I¢a}u, + - - - = byby (0)(O)I5k,x[_711 (T + 1500,

A.14 PN 2R .

A-14] (-3, + 1001 =PuI6. [AlS]
The Fourier transformation concerasthe average is taken

with respect td. P,[cos 6] denotes the Legendre polynomialsApplication to the NOESY experiment with a selective inver
(3 cogo — 1)/2. If we assume the internal motion to besion pulse on spii, in the middle of a mixing time yields the
uncorrelated and fast with respect to the global motion, Emansformation
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